

Table of Contents

Table of Contents ... 2

AppViewXS Overview ... 3

AppViewXS Integration Layer Installation Overview ... 4

Installation of Integration layer: AppViewXS Struts Folder .. 4

Installation of AppViewXS 2.01 into Web Application Server ... 5

AVXSIntegrationAppWeb application archive structure .. 8

Integrating AppViewXS 2.01 into a Single J2EE Web Application .. 8

Developer’s Guide to using AppViewXS 2.01 ... 11

Configuring Development IDE ... 11

AVXSIntegrationAppWeb’s Global Search and Replace Logic .. 12

$SERVLET_NAME .. 12

$URL_TO_SERVLET ... 12
$URL_TO_APP ... 12

CPSearchAndReplace Tool .. 12

HTML Content Returned from AppViewXS .. 14

Using Struts to Provide the Plugin Point to AppViewXS 2.01 Application ... 24

Business Logic (Struts Action) Class ... 24

Helper Class ... 25

Single JSP to Render all AppViewXS 2.01 Screens .. 25

Simple Flow Chart of the Whole Process .. 25

The avxsintegration Package Source Code ... 26

Actions Folder .. 26

Forms Folder .. 27

Helper Folder ... 27

Resources Folder .. 28

Utilities Folder ... 28

Incorporating New Functionality ... 28

Zip Code Validation Demo ... 29

Additional AppViewXS Feature ... 33

LoadBalance Feature.. 33

Tunneling Servlet Feature ... 34

Jakarta Commons Logging Support .. 35

AppViewXS Overview

AppViewXS, offered by Crystal Point, Inc., provides the capability for “green screen” legacy

systems with all their advantages to be rapidly and securely published into the world of the Web

via portals, while automatically* acquiring a modern, graphical user interface in the process.

Before: After

AppViewXS does this by using patented technology to transform 6530 data streams into a series

of objects imbedded into an easily-modified HTML page serving as a global template. This

transformation is done completely externally to the legacy application itself, and thus requires

absolutely no modifications of any kind whatsoever to any portion of the host system or legacy

application.

AppViewXS also provides a means to present users with a seamlessly blended environment

combining legacy applications and java applications. This can greatly facilitate incremental Java

development, whether you are migrating a legacy application to a web-tiered architecture, or

merely adding java-based functionality as an enhancement to the legacy application.

AppViewXS is a server based, thin-client product. That means no jvm at the end user platform

and no applets being downloaded to the end-user machine. Users are completely platform

independent, requiring only a browser.

*In addition to automatic, transformation from green-screen to GUI, AppViewXS provides tools

for advanced interface re-engineering of legacy applications. By “interface re-engineering” we

mean:

Before: After:

Accessing functionality embedded within terminal-based applications through graphical user interfaces

characterized by modern controls, objects and communication protocols to allow a rejuvenated look and

feel for the application as well as the ability to extend and build upon the legacy application for

workflow and interface optimization as well as multi-hosted, multi-application data integration.

AppViewXS Integration Layer Installation Overview

The ability to integrate legacy applications and java applications is not required by all users of

AppViewXS. Should the using organization ‘merely’ wish to rapidly and securely publish a

legacy application onto the web, providing it with a modern Web look-and-feel, the Integration

layer (Java Struts framework) is not needed.

Only when the using organization wants to present a blended combination of legacy application

screens (fueled by the legacy application) and java screens (fueled by java application logic)

does the Integration Layer become desirable. This blended presentation might be needed when

creating new java logic to enhance the legacy application, or when migrating a legacy

application from a single-tiered host application to a multi-tiered (also referred to as web-tiered)

application. (e.g., the application database remains NonStop SQL, while the application logic is

rewritten in the OSS iTP or other Java environment).

Installation of Integration layer: AppViewXS Struts Folder

AppViewXS does not contain or require a proprietary web server or web application server.

Rather, AppViewXS was built using standard java architecture to permit installation into the

widest possible range of web infrastructures including, almost certainly, yours. If, after reading

these instructions, you have any difficulty or any questions about installing AppViewXS, you are

urged to contact our technical support department, at support@crystalpoint.com or 425.806.1143.

The installation CD contains a folder named: appviewxs_struts. This folder is a self contained

build environment that organizations can use with ANT to build the

AVXSIntegrationAppWeb.war and AVXSIntegrationApp.ear files. Organizations may also

modify the provided build.xml file to suit their specific needs for building a custom

AVXSIntegrationAppWeb.war file.

The structure layout of the appviewxs_struts folder consists of:

 build folder – this folder contains the output for the build process.

 documentation folder – this folder contains the integration instruction guide (this document).

 lib folder – the lib folder contains javax.servlet.jar, commonst logging.jar, and struts.jar files that are

needed to compile the source code.

 src folder – this folder contains the integration source code for AppViewXS using Struts. This is where

your source code will need to be placed if you add your own code. During the build process, the output of

the class files will be placed in the web/WEB-INF/classes folder.

 web folder – this folder contains the AppViewXS web application and gets copied over into the build

folder during the build process.

 build.xml file – this file contains the ANT build script to compile and package the AppViewXS Web

Application.

mailto:support@crystalpoint.com

Installation of AppViewXS 2.01 into Web Application Server

In the 1.0 version of AppViewXS, the installation was solely a Java InstallShield process, and

the installed product did not conform to the J2EE Web Application Archive standard. However,

the Java InstallShield process provided a greater flexibility for installing the product in various

Application Servers and Environments. To preserve that flexibility, AppViewXS 2.01 has

retained its Java InstallShield installation capability.

To provide an easier and more standardized installation, AppViewXS 2.01 now also contains an

AVXSIntegrationAppWeb.war file that conforms to the J2EE Web Application Archive standard

and can be used to install onto the selected web application server. Organizations just copy the

AVXSIntegrationAppWeb.war file into the deploy folder of their application server. Then launch

a browser and access:

http://[server]/AVXSIntegrationAppWeb/index.html

With the war file, organizations can deploy AppViewXS 2.01 onto different application servers

with minimal effort. If the provided war file does not exactly suit your needs, you can create

your own WAR package and make modifications to the provided source code to facilitate an

installation package that is tailored for your custom needs. You can even change the name of the

AVXSIntegrationAppWeb.war file by renaming to something else that suits your need and then

deploy it onto your web application server.

The AppViewXS 2.01 installation process using the AVXSIntegrationAppWeb.war file is quite

simple:

1) Copy and Paste the AVXSIntegrationAppWeb.war file into your Application Server’s deployment

directory. For example, on Tomcat, that folder would be “webapps”.

2) Open a browser window and point it to: “http://[ServerName]/AVXSIntegrationAppWeb” and

configure the AppViewXS installation by clicking on the link “AppViewXS Config Screen”.

3) Enter the Web Application directory path location where the AVXSIntegrationAppWeb.war file is

installed. The location of this directory is based upon where the Application Server extracted the

AVXSIntegrationAppWeb.war file to create a folder named “AVXSIntegrationAppWeb. Part of the

installation for AppViewXS requires the physical location of this expanded war file because the

installation process performs a recursive search and replace of different variables to reflect your

environment settings. The search and replace process can only be done once. So if you run into

some problems, then you will have to delete the expanded AVXSIntegrationAppWeb folder and

redeploy the AVXSIntegrationAppWeb.war file.

4) Enter the URL address that is used to access the AppViewXS servlet. The URL value will be the

same as that used in step number 2 above. The URL address consists of the server address

hosting the application server and then the web application name. The web application name is

usually based on what the name of your war file is except without the .war extension.

5) After the Web Application directory path and URL address has been entered into the input field, the

next installation step is the global search and replace logic. The global search and replace occurs

automatically after you submit to the server the web application directory path and the URL

address. The search and replace logic is configured by default to use an external file named

“extensions.txt” which contain the names of the file extensions the search and replace logic will

filter through to perform the search and replace function. The file “extensions.txt” is stored in the

WEB-INF folder. Inside this file you will see a list of the extensions that the current logic will look

through and perform the search and replace action. You can comment out an extension by placing

a ‘ # ‘ character in front of the extension name, for example (#html). The search and replace logic

is configured to use the extensions.txt file but this behavior can be turned off. To turn this feature

off, you will need to modify the web.xml file and change the param value to ‘false’ for the parameter

‘use_extension_file’. After the global search and replace logic is finished, you will need to copy the

registration files (resqportal.reg and portaladm.reg) for AppViewXS into your web application:

location_of_expanded_war_file_on_app_server/AVXSIntegrationAppWeb/WEB-INF/appviewxs

folder.

6) Finally, you will need to configure the Servlets for AppViewXS in the web.xml file The included

web.xml file already comes pre-populated with these servlets, but you will need to update the

parameters to match your environment. AppViewXS consists of three different servlets. These

servlets are:

 appviewxs servlet “com.attinc.resqsrv.ResQServer” – this servlet configuration is required and

is used to run the terminal emulators on the server.

 monitor servlet “com.attinc.resqsrv.RQSMonitor” – this servlet configuration is optional and is

used to monitor AppViewXS emulation sessions.

 studio servlet “com.attinc.resqsrv.PortalStudio” – this servlet configuration is optional and is

used to customize maps for AppViewXS emulation session.

a) The configuration parameters for appviewxs servlet consist of 4 initialization

parameters:

 rqs_servlet_dir=C:\ApacheWebserver\jakarta-tomcat-

5.0.25\webapps\AVXSIntegrationAppWeb\WEB-INF\appviewxs
This parameter is used to specify the absolute path to the AppViewXS servlets

directory. Note: you will need to point this parameter to reflect your own specific

setting of where you installed AppViewXS.

 rqs_debug=0

This is AppViewXS debug parameter. Normally, it should be set to 0 (disabled). To

enable this parameter, set it to 1.

 rqs_log_days=50

The number of days to keep log files on the server before AppViewXS deletes them.

The default value is 50. This parameter is not necessary for AppViewXS to run.

 rqs_check_sessions=300

This parameter indicates how often AppViewXS should check (in seconds) for timed

out sessions. Any sessions that are discovered as timed out will have their user seat

returned to AppViewXS's connection pool. The default value for this parameter is

300. This parameter does not need to be set in order for AppViewXS to run.

b) The configuration parameters for the monitor servlet consist of 3 initialization

parameters:

 web_dir

Absolute path to servlet directory where the AppViewXS servlet resides

e.g." C:\ApacheWebserver\jakarta-tomcat-

5.0.25\webapps\AVXSIntegrationAppWeb\WEB-INF\appviewxs"

 app_url

URL to AppViewXS's Public Internet Directory

e.g. "http://yourserver/AVXSIntegrationAppWeb"

 time_out

The length of one Monitor session (in minutes). Default value is 30 minutes.

c) The configuration parameters for the studio servlet consists of 4 initialization

parameters:

 rqs_debug=1

This is the Studio debug parameter. Normally, it should be set to 1 (enabled). To

disable this parameter, set it to 0.

 rqs_image_dir=absolute path to images directory

Specifies the location for the Studio to store images. The location is generally under

the appviewxs/images folder of the Public Internet Directory.

e.g. "C:\ApacheWebserver\jakarta-tomcat-

5.0.25\webapps\AVXSIntegrationAppWeb\web\images"

 rqs_starthtml_dir=absolute path to AppViewXS Public Internet Directory

Specifies the location of the Studio’s com directory. The location is generally under

the AppViewXS Public Internet Directory

e.g. "C:\ApacheWebserver\jakarta-tomcat-

5.0.25\webapps\AVXSIntegrationAppWeb\web"

 rqs_codebase_url=URL to AppViewXS Public Internet Directory

Specifies the URL to the Studio’s classes.

The location is generally “http://yourserver/AVXSIntegrationAppWeb”

7) After the servlets have been configured, then you will need to stop and start your web

application server so that these new values will take effect.

http://yourserver/AVXSIntegrationAppWeb
http://yourserver/AVXSIntegrationAppWeb
http://yourserver/AVXSIntegrationAppWeb
http://yourserver/AVXSIntegrationAppWeb

AVXSIntegrationAppWeb application archive structure

The AVXSIntegrationAppWeb archive file when expanded has a simple structure. The layout

consists of the main AVXSIntegrationAppWeb folder. Inside this main folder, are the

subfolders:

 config – this folder contains web pages with instructions to configure the AppViewXS application.

 include – this folder contains include files that are used to simplify development of jsp and html files by

allowing inclusion of external files into jsp/html files. This allows easy update of the navigation bar, or of

specific information on any page that includes the include directive statement.

 script – this folder contains the common.js file used to modify or enhance the functionality of the jsp file

displayed in the browser. The common.js file is defined in the title.inc file.

 theme – this folder contains the theme and layout for the overlaying look and feel interface applied to the

html data returned from the AppViewXS application.

 web – this folder contains AppViewXS specific client side applications (Studio and Admin applet),

AppViewXS documentation, and html files to launch AppViewXS applications.

 WEB-INF – this folder contains the heart of AppViewXS 2.01 product. There are 4 subfolders in this

folder in addition to the struts-specific files, and the web.xml file used for the AppViewXS 2.01 installation

process.

 WEB-INF\appviewxs – this folder contains the AppViewXS application’s server side components needed

to run and customize the AppViewXS application. Also, the appviewxs folder is where licenses

(portaladm.reg and resqportal.reg) for AppViewXS are placed.

 WEB-INF\classes – this folder contains the compiled classes that are used to create a “proxy” interface

between the AppViewXS application and other (java) application. The Jakarta commons logging

properties file “log4j.properties” is also situated in this classes folder.

 WEB-INF\lib – this folder contains the jar files that are needed to use the Struts Framework, taglibs for the

jsp, and the appviewxs.jar file needed to run AppViewXS 2.01 in the integrated development environment.

 WEB-INF\src – this folder contains the avxsintegration source code package that can be expanded to

enhance the existing AppViewXS 2.01 integration development so that it will function with a specific J2EE

application. The source code in this folder can be used as an example to develop custom solutions using

AppViewXS 2.01 as a part of the overall product solution.

Integrating AppViewXS 2.01 into a Single J2EE Web
Application

Integrating AppViewXS 2.01 into an existing J2EE Web Application is relatively simple. As an

example, a sample web application named servlets-examples will be used to integrate the

AppViewXS web application into. The servlets-examples web application is a demo

application that comes installed with the Tomcat 5.x or higher installation. Create a folder named

appviewxs_temp on the web application server computer. Copy the

AVXSIntegrationAppWeb.war into this folder. Then using the jar utility, expand the

AVXSIntegrationAppWeb.war file. The command to extract the war file is:

jar –xvf AVXSIntagrationAppWeb.war

The appviewxs_temp folder should have the following contents:

config folder

include folder

script folder

theme folder

web folder

WEB-INF folder

AppViewXS.jsp file

ConfigResultScreen.jsp file

ConfigScreen.jsp file

EntryScreen.jsp file

HostInfo.jsp file

index.html file

launch_appviewxs.html file

Copy the extracted files and folders listed above into the pre-existing web application. For this

example, the files and folders should be copied into the servlets-examples web application. It is

important to preserve the above folder structure hierarchy when copying the contents into the

web application folder.

The web application servlets-examples contain the following contents:

images folder

WEB-INF folder

cookies.html file

reqparams.html file

sessions.html file

helloworld.html file

index.html file

reqheaders.html file

reqinfo.html file

The WEB-INF folder contains the following contents:

classes folder

web.xml file

1) Looking at the contents of servlets-examples, you need to re-name the existing index.html

file or merge the contents of the index.html file with AVXSIntegrationAppWeb’s index.html file.

2) Copy the folders and files for config, include, script, theme, web, AppViewXS.jsp,

ConfigResultScreen.jsp, ConfigScreen.jsp, EntryScreen.jsp, HostInfo.jsp, index.html,

launch_appviewxs.html into servlets-examples folder.

3) Looking at the WEB-INF folder, you need to either rename your existing web.xml file or

incorporate the contents of the two web.xml files into one web.xml file.

4) Copy the contents of the WEB-INF folder over into the servlets-examples’ WEB-INF folder.

You will need to take over everything from the AVXSIntegrationAppWeb’s WEB-INF folder

into the servlets-examples’ WEB-INF folder. Note that the src folder is only necessary if you

decide to use the web application in your Development IDE.

The new structure of servlets-examples folder after copying over the

AVXSIntegrationAppWeb’s contents:

images folder

config folder

include folder

script folder

theme folder

web folder

WEB-INF folder

cookies.html file

reqparams.html file

sessions.html file

helloworld.html file

index_old.html file

reqheaders.html file

reqinfo.html file

AppViewXS.jsp file

ConfigResultScreen.jsp file

ConfigScreen.jsp file

EntryScreen.jsp file

HostInfo.jsp file

index.html file

launch_appviewxs.html file

The WEB-INF folder for the servlets-examples folder will have the following contents:

appviewxs folder

classes folder

lib folder

src folder

extensions.txt file

struts-bean.tld file

struts-config.xml file

struts-html.tld file

struts-logic.tld file

struts-nested.tld file

struts-template.tld file

struts-tiles.tld file

web.xml file

Once all the necessary files have been integrated into the servlets-examples web application

folder, the servlets-examples can run the AppViewXS application or it can be re-packaged into

a war file and deployed to other web application servers. To launch the application, you will

need to open a browser to: “http://yourserver/servlets-examples”. Remember that you will still

need to finish running the installation process before you can actually start using AppViewXS.

Developer’s Guide to using AppViewXS 2.01

The Struts Framework integrated with AppViewXS 2.01 provides a useful plugin point to

integrate an AppViewXS-provided Legacy application into your overall product solution. This

solution provides many benefits and enhancements to any projects that require Host Access to

legacy applications.

Configuring Development IDE

A simple and straightforward method of using your Java IDE to develop your custom

AppViewXS Struts application is to take the AVXSIntegrationAppWeb.war file and extract the

contents from it using the jar –xvf command. Create a folder named AVXSIntegrationAppWeb

http://yourserver/servlets-examples
http://yourserver/servlets-examples

and copy the extracted contents into this newly created folder. You can now configure your

Java IDE to use this folder for your development. Don’t forget to configure your web.xml, and

to copy over the AppViewXS licenses (portaladm.reg and resqportal.reg) into the

AVXSIntegrationAppWeb/WEB-INF/appviewxs folder.

AVXSIntegrationAppWeb’s Global Search and Replace Logic

The AppViewXS application itself uses three variables as place holders throughout the

application which needs to be replaced with the user’s specific settings. These three variables in

the application are $SERVLET_NAME, $URL_TO_SERVLET, and $URL_TO_APP. During

the installation process for the AVXSIntegrationWeb module, these variables are replaced with

user specified values.

$SERVLET_NAME

This parameter is the name of the servlet that launches the emulation session. In the

AVXSIntegrationAppWeb installation, the servlet name has a default value of “appviewxs”.

Note if you change the value for servlet name, you will also need to make a change in the

web.xml file entry for the servlet-name parameter for servlet “com.attinc.resqsrv.ResQServer”.

$URL_TO_SERVLET

This parameter is the URL that will be used to point to the web application that contains the

AppViewXS servlets. Note that this parameter value should not include the servlet name.

$URL_TO_APP

This parameter is the URL to the web application and sub-directory that contains AppViewXS’s

applets.

CPSearchAndReplace Tool

The AVXSIntegrationAppWeb.war module encases logic that is used to install the AppViewXS

application. It has its own global search and replace tool (CPSearchAndReplace) that recursively

searches for the variable place holders and replaces them with the user specified values. The

code for CPSearchAndReplace tool is located in the avxsintegration.utility package. To keep the

installation process simple, the installation process only asks the user the physical location of the

web application directory path and the URL address to access the AppViewXS servlet.

The physical location of the web application directory path gives the CPSearchAndReplace tool

a starting point to begin the search. The URL address to access the AppViewXS servlet value

provides enough information to obtain the values for $URL_TO_APP and

$URL_TO_SERVLET replacements. As stated previously, the $SERVLET_NAME has been

pre-defined to be “appviewxs”. With the replacement values for these three place holder

variables, the CPSearchAndReplace tool starts its search from the web application directory path

and recursively searches and replaces the place holder variables with the specified values.

The CPSearchAndReplace has three configuration parameter settings that can be used to perform

case sensitive searches, turn on/off recursive search, and to limit the scope of file extensions to

search. The case sensitive search and recursive search parameters are boolean variables, the file

extension is a string array that contains the specific file types that will be searched. The file

extension string array is configured by default to contain the extensions

for .txt, .html, .htm, .ini, .properties, .jsp, and .xml. These are the file types that contain the place

holder variables in the AppViewXS application. Another feature of the CPSearchAndReplace

tool is that you can also read in the file types by using a file named “extensions.txt”. The

“extensions.txt” file is located in the WEB-INF folder. In this file you will need to enter the file

types without the asterisks in front of the .extension and after each extension entered; a carriage

return is used to separate the next extension. For example:

.txt

.html

.xml

You can also comment out an extension by using a # character (#.txt). By default, the

CPSearchAndReplace tool is configured to read the file extensions from the extensions.txt file.

This feature is configured in the web.xml file in the Action servlet configuration section. In the

web.xml file, you should see a param setting for “use_extension_file”. This is where you can

toggle the feature to use the external extensions file.

The place holder variables are specific for the AppViewXS application and the location of the

web application directory provides a convenient starting point to begin the search operation.

However, if you integrated the AppViewXS 2.01 product into your own existing web application

and you do not want to perform a recursive search through your own application, then you will

need to modify the code (avxsintegration.actions.AVXSConfigScreenAction) to search through

only the AppViewXS application specific folders. If you are looking at an expanded view of

AVXSIntegrationAppWeb module, the folders of interest would be the web folder and the

appviewxs folder inside of WEB-INF.

HTML Content Returned from AppViewXS

The AppViewXS Struts logic takes the HTML content returned from an AppViewXS emulation

session and parses it for specific contents. An example of an HTML content returned from an

AppViewXS session will look like this:

The HTML source code:

<HTML>

<HEAD>

<!----------BEGIN-META TAGS---------->

<META NAME="GENERATOR" Content="AppViewXS">

<META name="copyright" Content="Copyright © 2002 CrystalPoint.com, Inc.">

<META http-equiv="Content-Type" Content="text/html; charset=iso-8859-1">

<META http-equiv="Content-Language" Content="en-us">

<META http-equiv="Cache-Control" Content="no-cache">

<!----------END-META TAGS---------->

<TITLE>AppViewXS [CrystalPoint.com]</TITLE>

<SCRIPT LANGUAGE="javascript" Type="text/javascript">

<!--

function customSubmit(sKey) {

document.forms['RQSDefaultForm'].rqs_functionID.value = sKey;

document.forms['RQSDefaultForm'].submit();

}

function button3_onclick() {

window.open("http://mr-chan:8080/AVXSIntegrationAppWeb/web/UserHelp/rqpuserhelp.html",

"","status=no,toolbar=no,menubar=no,location=no,scrollbars=yes, resizable=yes");

}

//-->

</SCRIPT>

</HEAD>

<BODY bgcolor="#DBECDC" background="http://mr-

chan:8080/AVXSIntegrationAppWeb/web/images/wlbk4.jpg">

<TABLE border="1" width="100%" height="100%" cellpadding="4" cellspacing="1">

<TR>

<!--Blue Panel Begins Here. To remove the blue panel remove this section-->

<TD valign="top" width="2%" height="100%" bgcolor="#3399CC">

<DIV id="div1" style="DISPLAY: block; WIDTH: 20%" align=center>

<TABLE border="0" border="0" align="center">

<TR align=center><TD>

<IMG src="http://mr-chan:8080/AVXSIntegrationAppWeb/web/images/Portal_logo_dark.gif"

border="0" Alt="AppViewXS">

</TD></TR>

<TR><TD>

</TD></TR>

<TR align="center"><TD>

</TD></TR>

<TR><TD>

</TD></TR>

<TR align="center"><TD>

<FORM id="form5" name="form5" Action=""><INPUT type="hidden" name="rqs_pageID"

id="rqs_pageID" value="1" >

<INPUT type="hidden" name="rqs_sessionID" id="rqs_sessionID" value="4ADD52C7377D4BD4" >

<INPUT type="hidden" name="rqs_custom_dir" id="rqs_custom_dir" value="AVXS6530App" >

<INPUT type="button" value="Enter" id="rqs_actionID" name="rqs_actionID" onclick="return

customSubmit('Enter')" style="WIDTH: 80%">

<!-- Sample Additional Button

<INPUT type="button" value="F1" id="rqs_actionID" name="rqs_actionID" onclick="return

customSubmit('F1')" style="WIDTH: 80%">

-->

<INPUT type="button" value="Help" id="button3" name="button3" onclick="return

button3_onclick()" style="WIDTH: 80%">

</FORM>

</TD></TR>

</TABLE>

</DIV>

</TD>

<!--Blue Panel Ends Here. Stop Here-->

<!--DO NOT ERASE: Host code and Presentation begins here-->

<TD width="90%">

<FORM name="RQSDefaultForm" id="RQSDefaultForm" method="post" action="http://mr-

chan:8080/AVXSIntegrationAppWeb/appviewxs">

<TABLE style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;" cellspacing="0"

cellpadding="0" border="0">

<TR>

http://mr-/
http://www.crystalpoint.com/
http://mr-/

<FONT face="'courier new',monospace"

size="1"><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </T

D><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>&

nbsp;</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </

TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>

 </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> <

/TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD

> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>

</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><T

D> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>

;</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><

TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>&nbs

p;</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD>

<TD> </TD><TD> </TD><TD> </TD><TD> </TD></TR><TR>

<TD colspan="80"><LABEL

id="LABEL1">WELCOME TO k1000.cp.crystalpoint.com [PORT $ZTC0 #1047

WINDOW $ZTNT.#PTZLAJ6]</LABEL></TD>

<TD> </TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL2">TELSERV - T9553D40 - (10SEP99) -

 (IPMADD)</LABEL></TD>

<TD> </TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL5">Available Services:</LABEL></TD>

<TD> </TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL7">TACL EXIT</LABEL></TD>

<TD> </TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL8">Enter Choice> tacl</LABEL></TD>

<TD> </TD>

</TR>

<TR>

<TD colspan="7"><LABEL

id="LABEL9">TACL 1></LABEL></TD>

<TD> </TD>

<TD colspan="73"><INPUT type="text" name="TEXT10" id="TEXT10" maxlength="72" value=""

size="72" style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;color: #0000ff;background-

color: #ffffff;WIDTH: 511px;" tabindex="1"></TD>

</TR>

<TR>

<TD colspan="81"><INPUT type="text" name="TEXT11" id="TEXT11" maxlength="80" value=""

size="80" style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;color: #0000ff;background-

color: #ffffff;WIDTH: 567px;" tabindex="2"></TD>

</TR>

<TR>

<TD colspan="81"><INPUT type="text" name="TEXT12" id="TEXT12" maxlength="80" value=""

size="80" style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;color: #0000ff;background-

color: #ffffff;WIDTH: 567px;" tabindex="3"></TD>

</TR>

<TR>

<TD colspan="8"><INPUT type="text" name="TEXT13" id="TEXT13" maxlength="7" value="" size="7"

style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;color: #0000ff;background-color:

#ffffff;WIDTH: 56px;" tabindex="4"></TD>

<TD colspan="73"> </TD>

</TR>

<TR>

<TD colspan="11"> </TD>

<TD colspan="21"><INPUT type="submit" name="LOGON_BUTTON" id="LOGON_BUTTON" value="Logon"

tabindex="27" style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;background-color:

#c0c0c0;WIDTH: 146px;"></TD>

<TD colspan="49"> </TD>

</TR>

</TABLE>

<INPUT type="hidden" name="rqs_pageID" id="rqs_pageID" value="1" >

<INPUT type="hidden" name="rqs_sessionID" id="rqs_sessionID" value="4ADD52C7377D4BD4" >

<INPUT type="hidden" name="rqs_custom_dir" id="rqs_custom_dir" value="AVXS6530App" >

<INPUT type="hidden" name="rqs_functionID" id="rqs_functionID" value="">

<INPUT type="hidden" name="rqs_activefield" id="rqs_activefield" value="TEXT10" >

<INPUT type="hidden" name="rqs_virtual_signature" id="rqs_virtual_signature"

value="27312760297031098740" >

<HR><LABEL

id="RQS_HOST_MESSAGE_STATUS"> &n

bsp; &nb

sp; &nbs

p;

; CONV</LABEL><HR>

<TABLE width="100%"><TR valign="top"><TD width="15%">

<TABLE width="100%" cellpadding="0" cellspacing="0"><TR><TD><SELECT name="rqs_keypadID"

id="rqs_keypadID" style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 12px;">

<OPTION value="Enter" SELECTED>Enter</OPTION>

<OPTION value="S-Enter">S-Enter</OPTION>

<OPTION value="Refresh">Refresh</OPTION>

<OPTION value="Reset">Reset</OPTION>

<OPTION value="H-Reset">H-Reset</OPTION>

<OPTION value="S-Reset">S-Reset</OPTION>

<OPTION value="Break">Break</OPTION>

<OPTION value="Exit">Exit</OPTION>

<OPTION value="F1">F1</OPTION>

<OPTION value="F2">F2</OPTION>

<OPTION value="F3">F3</OPTION>

<OPTION value="F4">F4</OPTION>

<OPTION value="F5">F5</OPTION>

<OPTION value="F6">F6</OPTION>

<OPTION value="F7">F7</OPTION>

<OPTION value="F8">F8</OPTION>

<OPTION value="F9">F9</OPTION>

<OPTION value="F10">F10</OPTION>

<OPTION value="F11">F11</OPTION>

<OPTION value="F12">F12</OPTION>

<OPTION value="F13">F13</OPTION>

<OPTION value="F14">F14</OPTION>

<OPTION value="F15">F15</OPTION>

<OPTION value="F16">F16</OPTION>

<OPTION value="SF1">SF1</OPTION>

<OPTION value="SF2">SF2</OPTION>

<OPTION value="SF3">SF3</OPTION>

<OPTION value="SF4">SF4</OPTION>

<OPTION value="SF5">SF5</OPTION>

<OPTION value="SF6">SF6</OPTION>

<OPTION value="SF7">SF7</OPTION>

<OPTION value="SF8">SF8</OPTION>

<OPTION value="SF9">SF9</OPTION>

<OPTION value="SF10">SF10</OPTION>

<OPTION value="SF11">SF11</OPTION>

<OPTION value="SF12">SF12</OPTION>

<OPTION value="SF13">SF13</OPTION>

<OPTION value="SF14">SF14</OPTION>

<OPTION value="SF15">SF15</OPTION>

<OPTION value="SF16">SF16</OPTION>

<OPTION value="RollUp">RollUp</OPTION>

<OPTION value="RollDn">RollDn</OPTION>

<OPTION value="S-RollUp">S-RollUp</OPTION>

<OPTION value="S-RollDn">S-RollDn</OPTION>

<OPTION value="PageUp">PageUp</OPTION>

<OPTION value="A-PgUp">A-PgUp</OPTION>

<OPTION value="PageDn">PageDn</OPTION>

<OPTION value="A-PgDn">A-PgDn</OPTION>

<OPTION value="DelLine">DelLine</OPTION>

<OPTION value="InsLine">InsLine</OPTION>

<OPTION value="EndFld">EndFld</OPTION>

<OPTION value="EndPg">EndPg</OPTION>

<OPTION value="EolErs">EolErs</OPTION>

<OPTION value="EopErs">EopErs</OPTION>

</SELECT></TD>

<TD><INPUT type="submit" name="RQSSubmit" id="RQSSubmit" value="Submit" style="FONT-FAMILY:

'courier new',monospace;FONT-SIZE: 12px;WIDTH: 63px;"></TD>

<TD> </TD>

</TR>

</TABLE></TD>

<TD>

<TABLE cellpadding="0" cellspacing="0"><TR>

<TD><INPUT type="submit" name="rqs_actionID" id="rqs_actionID" value="REFRESH" style="FONT-

FAMILY: 'courier new',monospace;FONT-SIZE: 12px;WIDTH: 63px;"></TD><TD><INPUT

type="submit" name="rqs_actionID" id="rqs_actionID" value="ENTER" style="FONT-FAMILY: 'courier

new',monospace;FONT-SIZE: 12px;WIDTH: 63px;"></TD><TD><INPUT type="submit"

name="rqs_actionID" id="rqs_actionID" value="EXIT" style="FONT-FAMILY: 'courier

new',monospace;FONT-SIZE: 12px;WIDTH: 63px;"></TD><TD

colspan="5"> </TD></TR></TABLE></TD>

</TR>

</TABLE>

<INPUT type="hidden" name="RQS_BGACTIVE" id="RQS_BGACTIVE" value="#ffff00" >

<INPUT type="hidden" name="RQS_TXTACTIVE" id="RQS_TXTACTIVE" value="#000000" >

<TABLE width="100%"><TR><TD align="left"><TR>

<TD align="left"><FONT face="'courier new',monospace" size="1" style="color:

#000000;">Screen ID: <FONT face="'courier new',monospace" size="1"

style="color: #000000;">logon_tacl</TD>

<TD align="right"><FONT face="'courier new',monospace" size="1" style="color:

#000000;">Thank you for using AppViewXS</TD>

</TR>

</TABLE>

</FORM>

<INPUT type="hidden" id="crystalpoint">

</TD>

<!--DO NOT ERASE: Host code and Presentation ends here-->

</TR>

</TABLE>

<SCRIPT LANGUAGE=javascript src="http://mr-

chan:8080/AVXSIntegrationAppWeb/web/js/ncbaseN66530.js">

</SCRIPT>

</BODY>

</HTML>

The highlighted red content represents the parsed out data that is used to display to the users via

a JSP page. The JSP page will already have the matching HTML tags to accommodate the

contents that have been parsed out. When parsing the HTML content, a good starting point is to

capture the data inside the <FORM> tags for ‘RQSDefaultForm’. Then you will also need to

include the:

<INPUT type="hidden" id="crystalpoint"> and

<SCRIPT LANGUAGE=javascript src="http://mr-

chan:8080/AVXSIntegrationAppWeb/web/js/ncbaseN66530.js">

</SCRIPT>

http://mr-/
http://mr-/

Here is an example of the same screen above, but displayed using JSP with the parsed out date

and source:

The HTML source code is generated by the JSP (appviewxs.jsp) file. The appviewxs.jsp file

contains the following content:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>

<HEAD>

<LINK rel="stylesheet" href="theme/document.css" type="text/css">

<META http-equiv="Content-Style-Type" content="text/css">

<META name="GENERATOR" content="IBM WebSphere Studio">

<%@ include file="/include/title.inc" %>

<%@ taglib uri="/WEB-INF/struts-html.tld" prefix="html" %>

<SCRIPT type="text/javascript">

// Used to set Action value on Form for AppView screens

var AVXSScreenURL = 'xs<%=titleScreenID%>.do?'+queryString;

</SCRIPT>

</HEAD>

<BODY onload="AVXSIntegrationOnload('RQSDefaultForm');" onunload="AVXSIntegrationOnunload();">

<%-- **** JSP Page include tags go here **** --%>

<%@ page import="avxsintegration.forms.AppViewXSActionForm"%>

<TABLE width="100%" cellpadding="0" cellspacing="0">

<TR>

<TD colspan="2"><%@include file="/include/header.inc" %></TD>

</TR>

<TBODY>

<TR>

<TD valign="top" width="160" bgcolor="#006699"><%@include

file="/include/nav.inc" %></TD>

<TD valign="top" width="100%">

<html:errors property="hostaccessproblem"/>

<html:form name="RQSDefaultForm" type="AppViewXSActionForm" scope="request"

action="xs">

<% AppViewXSActionForm appViewForm = (AppViewXSActionForm)

request.getAttribute("RQSDefaultForm");%>

<%=appViewForm.getHtmlBody()%>

</html:form>

</TD>

</TR>

</TBODY>

</TABLE>

<TABLE width="100%" cellpadding="0" cellspacing="0">

<TR>

<TD height="20" colspan="2" valign="top" class="footer"></TD>

</TR>

</TABLE>

</BODY>

</HTML>

Now the HTML source generated by the appviewxs.jsp after parsing the pertinent data:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<HTML>

<HEAD>

<LINK rel="stylesheet" href="theme/document.css" type="text/css">

<META http-equiv="Content-Style-Type" content="text/css">

<META name="GENERATOR" content="IBM WebSphere Studio">

<TITLE>IntegrationApp - FirstScreen</TITLE>

<SCRIPT type="text/javascript" src="script/common.js"></SCRIPT>

<SCRIPT type="text/javascript">

var queryString = 'window='+window.name;

// Used to set Action value on Form for migrated screens

function setFormAction() {

var x = 'FirstScreenScreen.do?'+queryString;

document.forms["FirstScreen"].action=x;

}

var global_session_timeout = 30*60*1000; // default 30 minutes

var global_heartbeat = 300*1000; // send heartbeat every 5 minutes

</SCRIPT>

<SCRIPT type="text/javascript">

// Used to set Action value on Form for AppView screens

var AVXSScreenURL = 'xsFirstScreen.do?'+queryString;

</SCRIPT>

</HEAD>

<BODY onload="AVXSIntegrationOnload('RQSDefaultForm');" onunload="AVXSIntegrationOnunload();">

<TABLE width="100%" cellpadding="0" cellspacing="0">

<TR>

<TD colspan="2"><div id="heartbeatWindow"

style="position:absolute;width:155;height:65;cursor:hand;left:500;top:0;visibility:hidden;z-

index:9;background-color:#FFFFEE">

<iframe id="heartbeatFrame" width="155" height="65" frameborder="1" marginwidth="0"

marginheight="0" scrolling="NO">

</iframe>

</div>

<TABLE BORDER="0" class="header" CELLSPACING="0" CELLPADDING="0" WIDTH="100%">

<TR>

<td width="150">

<img border="0" width="200" height="55" alt="Company's LOGO"

src="/AVXSIntegrationAppWeb/theme/AppView%20XS%20logo.gif">

</td>

<td>

</td>

</TR>

<TR>

<TD valign="middle" align="center" bgcolor="#003366">

</TD>

<td>

</td>

</TR>

</TABLE>

</TD>

</TR>

<TBODY>

<TR>

<TD valign="top" width="160" bgcolor="#006699"><TABLE class="nav_top4" border="0"

CELLPADDING="0" CELLSPACING="0" WIDTH="160">

<TR valign="TOP">

<TD>

Home Page

<!--

AppView Screen 1

-->

</TR>

</TD>

Host Address and Port

Logout

<TR valign="top">

<TD valign="top" width="160"> </TD>

</TR>

</TABLE>

</TD>

<TD valign="top" width="100%">

<form name="RQSDefaultForm" method="post"

action="/AVXSIntegrationAppWeb/xs.do">

<TABLE style="FONT-FAMILY: 'courier new',monospace;FONT-

SIZE: 13px;" cellspacing="0" cellpadding="0" border="0">

<TR>

<FONT face="'courier new',monospace"

size="2"><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </T

D><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>&

nbsp;</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </

TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>

 </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> <

/TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD

> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>

</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><T

D> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>

;</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><

TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD>&nbs

p;</TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD><TD> </TD>

<TD> </TD><TD> </TD><TD> </TD></TR><TR>

<TD colspan="80"><LABEL

id="LABEL1">WELCOME TO k1000.cp.crystalpoint.com [PORT $ZTC0 #1047

WINDOW $ZTNT.#PTZLAJH]</LABEL></TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL2">TELSERV - T9553D40 - (10SEP99) -

 (IPMADD)</LABEL></TD>

</TR>

<TR>

<TD colspan="80"> </TD>

</TR>

<TR>

<TD colspan="80"> </TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL5">Available Services:</LABEL></TD>

</TR>

<TR>

<TD colspan="80"> </TD>

</TR>

<TR>

<TD colspan="80"><LABEL

id="LABEL7">TACL EXIT</LABEL></TD>

</TR>

<TR>

<TD colspan="13"><LABEL

id="LABEL8">Enter Choice></LABEL></TD>

<TD> </TD>

<TD colspan="10"><INPUT type="text" name="TEXT9" id="TEXT9" maxlength="9" value="" size="9"

style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE: 13px;color: #0000ff;background-color:

#ffffff;WIDTH: 80px;" tabindex="1"></TD>

<TD colspan="56"> </TD>

</TR>

</TABLE><INPUT type="hidden" name="rqs_pageID" id="rqs_pageID" value="1" >

<INPUT type="hidden" name="rqs_sessionID" id="rqs_sessionID" value="D993806A36C84066" >

<INPUT type="hidden" name="rqs_custom_dir" id="rqs_custom_dir" value="AVXS6530App" >

<INPUT type="hidden" name="rqs_functionID" id="rqs_functionID" value="">

<INPUT type="hidden" name="rqs_activefield" id="rqs_activefield" value="TEXT9" >

<INPUT type="hidden" name="rqs_virtual_signature" id="rqs_virtual_signature"

value="26282865117332342985" >

<HR><LABEL

id="RQS_HOST_MESSAGE_STATUS"> &n

bsp; &nb

sp; &nbs

p;

; CONV</LABEL><HR><SELECT

name="rqs_keypadID" id="rqs_keypadID" style="FONT-FAMILY: 'courier new',monospace;FONT-SIZE:

13px;">

<OPTION value="Enter" SELECTED>Enter</OPTION>

<OPTION value="S-Enter">S-Enter</OPTION>

<OPTION value="Refresh">Refresh</OPTION>

<OPTION value="Reset">Reset</OPTION>

<OPTION value="H-Reset">H-Reset</OPTION>

<OPTION value="S-Reset">S-Reset</OPTION>

<OPTION value="Break">Break</OPTION>

<OPTION value="Exit">Exit</OPTION>

<OPTION value="F1">F1</OPTION>

<OPTION value="F2">F2</OPTION>

<OPTION value="F3">F3</OPTION>

<OPTION value="F4">F4</OPTION>

<OPTION value="F5">F5</OPTION>

<OPTION value="F6">F6</OPTION>

<OPTION value="F7">F7</OPTION>

<OPTION value="F8">F8</OPTION>

<OPTION value="F9">F9</OPTION>

<OPTION value="F10">F10</OPTION>

<OPTION value="F11">F11</OPTION>

<OPTION value="F12">F12</OPTION>

<OPTION value="F13">F13</OPTION>

<OPTION value="F14">F14</OPTION>

<OPTION value="F15">F15</OPTION>

<OPTION value="F16">F16</OPTION>

<OPTION value="SF1">SF1</OPTION>

<OPTION value="SF2">SF2</OPTION>

<OPTION value="SF3">SF3</OPTION>

<OPTION value="SF4">SF4</OPTION>

<OPTION value="SF5">SF5</OPTION>

<OPTION value="SF6">SF6</OPTION>

<OPTION value="SF7">SF7</OPTION>

<OPTION value="SF8">SF8</OPTION>

<OPTION value="SF9">SF9</OPTION>

<OPTION value="SF10">SF10</OPTION>

<OPTION value="SF11">SF11</OPTION>

<OPTION value="SF12">SF12</OPTION>

<OPTION value="SF13">SF13</OPTION>

<OPTION value="SF14">SF14</OPTION>

<OPTION value="SF15">SF15</OPTION>

<OPTION value="SF16">SF16</OPTION>

<OPTION value="RollUp">RollUp</OPTION>

<OPTION value="RollDn">RollDn</OPTION>

<OPTION value="S-RollUp">S-RollUp</OPTION>

<OPTION value="S-RollDn">S-RollDn</OPTION>

<OPTION value="PageUp">PageUp</OPTION>

<OPTION value="A-PgUp">A-PgUp</OPTION>

<OPTION value="PageDn">PageDn</OPTION>

<OPTION value="A-PgDn">A-PgDn</OPTION>

<OPTION value="DelLine">DelLine</OPTION>

<OPTION value="InsLine">InsLine</OPTION>

<OPTION value="EndFld">EndFld</OPTION>

<OPTION value="EndPg">EndPg</OPTION>

<OPTION value="EolErs">EolErs</OPTION>

<OPTION value="EopErs">EopErs</OPTION>

</SELECT><INPUT type="submit" name="RQSSubmit" id="RQSSubmit" value="Submit" style="FONT-

FAMILY: 'courier new',monospace;FONT-SIZE: 13px;WIDTH: 72px;">

<INPUT type="hidden" id="crystalpoint">

<SCRIPT LANGUAGE=javascript src="http://mr-

chan:8080/AVXSIntegrationAppWeb/web/js/iebase6530.js">

</SCRIPT>

</TBODY>

</TABLE>

</form>

</TD>

</TR>

<TABLE width="100%" cellpadding="0" cellspacing="0">

<TR>

<TD height="20" colspan="2" valign="top" class="footer"></TD>

</TR>

</TABLE>

</BODY>

</HTML>

Depending on what you want displayed to your end users, you can parse out the contents that are

pertinent to your users. The specific contents that are still needed would be the contents that

include the hidden input fields. These hidden variables are used to store specific screen

constants that are used by the AppViewXS Struts logic and the AppViewXS emulation sessions.

There are many hidden input field variables, but the ones that are most important are:

 rqs_pageID

 rqs_sessionID

 rqs_virtual_signature

When replying to the host, these data are needed to keep the session in sync with the

AppViewXS emulation. There are other hidden input variables such as:

 rqs_activefield

 rqs_actionID

 rqs_functionID

http://mr-/

Even though these hidden fields are not critical for the emulation to function, they do provide

useful information to the AppViewXS emulation session. For example, rqs_activefield tells us

which field on the browser is the active field when the emulation response is displayed in the

browser, rqs_actionID tells the emulator wich function key the user pressed on the keyboard, and

the rqs_functionID is use to depict which drop down list function key the user selected. These

hidden input variables are all accessible by javascript.

Using Struts to Provide the Plugin Point to AppViewXS 2.01
Application

Struts is an open source framework for building Java web applications. It is used to help extend

and create a plugin point to control access to AppViewXS 2.01 application. The development of

the plugin point is quite straightforward if you are knowledgeable in using the Struts framework.

Those familiar with Struts will readily understand the benefits in using this framework to provide

a convenient plugin point to access AppViewXS 2.01.

With Struts, a single Servlet is usually all that is required to support all of the URLs for a single

web application. The struts-config.xml file maps the URL to a specific Struts Action class to

handle the request. Typically the response is then forwarded on to a JSP for the final

composition of the user interface.

A simple way of looking at using the Struts framework in AppViewXS 2.01 is to use a single

Business logic class, a single helper class to isolate the communication with AppViewXS and a

single JSP to render the output for all AppViewXS screens.

Business Logic (Struts Action) Class

The business logic class, also known as the Struts Action class, represents the plugin point in

which the class (avxsintegration.actions.AppViewXSDispatcherAction) is responsible for

communicating via a helper class (avxsintegration.helper.AppViewXS Proxy) with the

AppViewXS application and then forwarding the HTML returned from AppViewXS to the

corresponding JSP file. You can use this Action class to leverage your existing Security and

infrastructure modules to control access into AppViewXS 2.01.

You can also control the HTML data returned from the AppViewXS 2.01 application and parse it

to achieve a standard User Interface. For instance, if the COBOL screens all displayed a

Date/Time stamp on every screen, but the Web Application already supports a JavaScript clock

on the header of every page, the Action class may parse the HTML and strip out the fields

corresponding to the clock returned by AppViewXS 2.01. This is one of the most powerful

reasons to ‘get between’ the user and AppViewXS. It allows for a standardization of the final

HTML rendering across all screens without creating screen-specific maps in AppViewXS Studio.

The Action class can also be used to facilitate the synergy between an AppViewXS application

and an external web or java application. After processing the data, the modified data can either

be passed onto AppViewXS to transmit to the NonStop Host or posted back to the external

application.

The Action class provides a convenient point for users to ‘hook up’ AppViewXS 2.01 to become

an integral part of their overall product solution.

Helper Class

The helper class (AppViewXS Proxy) is used to pass the request to AppViewXS 2.01 application

via the J2EE RequestDispatcher class. The ‘include’ method passes the request to the

AppViewXS Servlet and then returns the generated response. All communication between the

original web application and the AppViewXS is accomplished via a single stateful Java class.

This class will parse the returned HTML response and store some of the values of the hidden

HTML fields returned by AppViewXS. The minimum sets of value to store in this helper class

are:

 rqs_pageID

 rqs_sessionID

 rqs_virtual_signature

These values must be provided in all future communication with AppViewXS. The helper class

then returns the HTML response from the NonStop host back to the Business class which is

mapped to a JSP file for rendering.

Single JSP to Render all AppViewXS 2.01 Screens

A single JSP that contains the layout which is consistent with the look and feel of all the other

screens is created. For many Web Applications this means that a common header will be

displayed on every screen along with a navigation menu. The JSP will retrieve the parsed

HTML response from the Action class via a Struts ActionForm and display it in the same

location as all other screens use. The AppViewXS HTML response has already been parsed to

remove the <HEAD> portion so that the HTML that is present in the ActionForm may be

directly embedded into the JSP.

Simple Flow Chart of the Whole Process

To clarify the picture, it often helps to have a diagram to depict the flow of information in

AppViewXS 2.01

The Action class provides the access point to external applications and other re-usable

infrastructure related modules. The AppViewXS Proxy is responsible for maintaining the

connection specific information as well as specific error handling to the AppViewXS servlet.

The AppViewXS servlet provides the connection access to the HP NonStop Host and returns the

HTML response back to the AppViewXS Proxy. AppViewXS Proxy parses the HTML response

looking for specific connection information to update its state. The Action class then formats the

response to parse the HTML data that should be displayed to the end user.

The avxsintegration Package Source Code

The avxsintegration package contains code that you can use to integrate AppViewXS 2.01

application into your existing web application. The package is subdivided into 5 logical

subfolders. These subfolders are:

 actions

 forms

 helper

 resources

 utility

Actions Folder

The actions folder contains the classes that are used to interact with the AppViewXS application

and other external applications. This folder is mainly where you would want to place your

business logic classes and other functionality that you would like to extend or enhance your

existing legacy application. The actions folder currently contains the following source code

files:

 AppViewXSDispatcherAction – this class controls the request flow between the browser

and AppViewXS application with the help of AppViewXSProxy.

 AppViewXSHearbeatAction – this class is intended to provide a mechanism to send a

heart beat to your legacy application so that a time out does not occur.

 AVXSConfigScreenAction – this class contains the logic to perform the AppViewXS

application installation.

 EntryScreenAction – this class is a simple STRUTS demo screen that takes two input

fields and then combines them into a single name.

HP
NonStop

Host

AppViewXS

Servlet

AppViewXS

Proxy

Customer’s

Struts
Action

Class

Browser

 HostInfoAction – this class is a screen that takes the input for host address and port

number which is used to by AppViewXS to connect to your host with the specified

address and port.

 ZipValidationAction – this class is a simple demo that takes the address information

provided by the ZipValidation.jsp and posts the information to a USPS service which

provides the zip code plus 4 information..

Forms Folder

The forms folder contains classes that are used to store the input field data from the JSP files.

The data stored in these forms are then used by the action classes to perform their functions. The

forms folder currently contains the following source code files:

 AppViewXSActionForm – this class contains the HTML data retrieved from an

AppViewXS emulation session.

 AVXSConfigScreenActionForm – this class contains the setting information used for the

AppViewXS application installation.

 EntryScreenActionForm – this class contains the first and last name information data

used by the Struts demo.

 HostInfoActionForm – this class contains the data for the host address and port number.

 ZipValidationForm – this class contains the data used to store the address information.

Helper Folder

The helper folder contains classes that provide utility functions to aid Action classes in their

functionality. The helper folder currently contains the following source code files:

 ActionHelper – this class provides a simple utility to retrieve the names of the screen URI

and strip off the .do extensions. It is just a simple helper class to identify the screen you

are currently on.

 AppViewXSProxy – this class provides the functionality to communicate with the

AppViewXS application. It also contains all the specific AppViewXS session

information.

 AppViewXSResponseStream – this class is used to cache the output from AppViewXS

application for post-processing of the HTML response.

 AppViewXSResponseWrapper – this class is used to buffer the response for post-

processing of the HTML emitted by AppViewXS.

 ConfigResult – this class is a simple helper form that is used to store AppViewXS

installation specific messages.

 ExternalApplicationProxy – this class provides a simple proxy to interact with external

web application or site to post information to and then retrieve the result back.

 IConstants – this class is an interface class used to contain constants that is used by the

avxsintegration package.

Resources Folder

The resources folder contains a single file named “ApplicationResources.properties”. This

properties file is part of the Struts framework which is used for custom error message handling.

This file provides a convenient centralized location to keep all the error messages that gets

generated.

Utilities Folder

The utilities folder contains source files that is used to aid in the installation process for the

AppViewXS application. All the files in this folder form the global search and replace tool used

for the AppViewXS installation. The utilities folder currently contains the following source code

files:

 BoyerMoore – this class file contains the algorithm used to perform the search. Note that

this source code is adapted from Michael Lecuy.

 CPSearchAndReplace – this class file is the main file that is used to configure and

perform the search and replace.

 extensions.txt – this is a sample file containing extensions that can be used to configure

the extensions types for CPSearchAndReplace to filter through.

 ParseFile – this class file contains the logic to open up a file and read through the file

using the BoyerMoore class to search for the target text and then replace it with the new

value.

Incorporating New Functionality

Adding new feature and functionality to AVXSIntegrationAppWeb is relatively straightforward.

Working within the Struts framework, you will need to do the following:

1) Create the Action class to perform your specific logic/function.

2) Create the ActionForm bean to store and retrieve data used for the Action class.

3) Add the Action class and ActionForm information into the struts-config.xml file.

4) Create the corresponding JSP file to display UI and handling user interaction.

The example “Zip code look up” link in the AVXSIntegrationAppWeb demo is a simple JSP file

that users fill out their address information in order to get their zip code plus 4 information.

Zip Code Validation Demo

Note: This demo assumes that you already know how to customize your screens using the AppViewXS

Customization Studio Tool.

This demo works by using the ZipValidation.jsp form to fill in customer address information.

The demo requires that you create a custom screen using the AppViewXS Customization Studio

tool. Before you begin the customization process for this demo, you will need to create a global

variable named “zip_plus4_result”. Make sure that you create this variable before you customize

your screen as this variable needs to be pre-defined first using the Session Configuration tool of

the Customization Studio. After you have pre-defined the “zip_plus4_result” global variable,

then you can begin and create a custom screen for the zip validation demo.

The text fields you will need to create will correspond to the following labels:

 Name

 Address

 City

 State

You will also need to create a label to store the zipcode value retrieved from the demo. For the

text fields that you created next to the corresponding labels, you will need to configure the global

variables to store/write the data that are entered into the text fields. The global variables that are

used for this demo corresponding to their text fields are the following:

 Name Text Field – firmGV

 Address Text Field – address1GV

 City Text Field – cityGV

 State Text Field – stateGV

Then next to the label you have created for the zipcode, you will need to create another label

which will read from the global variable “zip_plus4_result”.

Next, you will need to create a button (label it Store GV) so that the data entered into the text

field gets stored into each global variable. This button will need to be assigned the <P_C>

behavior.

Finally, a web link is created in which it is customized via the studio tool to post the data stored

into the text fields as parameters to the ZipValidation.jsp file. For the created link, using the

Studio tool, select the Macro option and enter the following information into the “Command

Line Parameters” window:

 http://your web application url/AVXSIntegrationAppWeb/ZipValidationScreen.do?firm=

 <firmGV>

 &address1=

http://yourwebapplicationurl/AVXSIntegrationAppWeb/ZipValidationScreen.do?firm

 <address1GV>

 &city=

 <cityGV>

 &state=

 <stateGV>

Here is an example image of the Macro dialogue box for the web link:

When the user has entered all the pertinent information into the customized screen, presses the

customized button to write the data into the different global variables and then clicks on the link

“GetZipCode”, the data is passed as parameters to the ZipValidationScreen URL to be processed

by the ZipValidation.jsp class.

Here is an example screen customized for the zipcode demo:

When this demo is hooked up from a customized screen such as a web link that reads in the

parameters the user had entered via the global variables, the user then clicks on the web link

which in turn passes the parameters to the ZipValidation.jsp page. This page having its

parameters in the form field filled with valid content will then perform a submit (Post) to the

external USPS web application. The result is then stored into the zip_plus4_result field in the

Form AddressForm. Then a javascript function is called when the page is reloaded. This

javascript code automatically redirects the browser back to the active AppViewXS session with

the zip_plus4_result appended to the URL. Here is an example screen with zip code encoded

into the URL:

Note that the zip_plus4_result and its value is encoded into the URL string. If you do not want

to see the parameters encoded into the URL, you can probably use an invisible form to submit

the zip_plus4_result back to the AppViewXS servlet.

Depending on your needs, it is helpful sometimes to create a link (Return to Active Screen) on

the navigation panel that brings the emulation session back into focus. Majority of times when

you click on a link, you end up losing the emulation session because your browser is now

pointed at a different page. If the history back button is disabled, then you would have no way of

returning back to your active emulation session.

Creating new external application and also integrating your existing application with your legacy

application is not complex, but will require coding on your part to customize the specific details

using the existing AppViewXSIntegrationAppWeb frame work as a guideline to enhance and

extend your existing legacy application.

Additional AppViewXS Feature

LoadBalance Feature

The load balanced feature of AppViewXS provides a simple Round Robin loadbalancer logic to

spread the connections out evenly to different hosts. The host address values are configured in

the "loadbalanced_url.cpi" file which is located in the folder:

at2custom/at2wsp folder.

In the "loadbalanced_url.cpi" file, the first entry must list out the number of distinct host

addresses that will be in this file. For example, if you have 5 different host URL, then this first

entry value will be 5. The variable name used in this file to depict the number of different host

address will be "distinctURL". Then the next following entries into the file will contain the

string "URL" and a number representing the different host address and port. The variable

naming convention will be in a sequential incremental fashion of the numerical digit at the end of

the string "URL". Note that the host port should also be included into the host address definition.

Be sure to use a colon to seperate the host address and port value.

An example file would look something like this:

distinctURL=5

URL1=tn6530://tandem.crystalpoint.com:23

URL2=tn6530://tandem2.crystalpoint.com:23

URL3=tn6530://tandem3.crystalpoint.com:24

URL4=tn6530://tandem4.crystalpoint.com:23

URL5=tn6530://tandem5.crystalpoint.com:22

The string "tn6530://" tells the AppViewXS servlet which transport protocol we are using for the

emulation session.

If you do not want to use the load balanced feature of this product, you can simply delete the

loadbalanced_url.cpi file from the at2wsp folder or comment out every line in the file. To

comment out each line, all you need to do is prepend the pound sign ("#") on each line. This will

revert the AppViewXS servlet to use address and port setting from the Portal.html or whatever

launcher file you use to start an AppViewXS session.

Tunneling Servlet Feature

The tunneling servlet feature of AppViewXS provides a way to have AppViewXS sessions

communicate through the Tunneling Servlet to the host. The tunneling servlet is included with

the AppViewXS installation CD and is stored in the following CD directory:

zip_files\tunnelservlet.zip

The documentation for the tunneling servlet is also on the CD and is located in:

documentation\AppViewXS Tunneling Servlet Readme1.doc

A new feature only within AppViewXS

is that you can supply two different Tunneling Servlet URL address using AppViewXS's

Tunneling servlet config file "tunneling_config.cpi". This new feature provides a back up

Tunneling servlet that will be automatically re-directed to the secondary Tunneling servlet

address if the primary Tunneling servlet address is not responding. The tunneling servlet address

values are configured in the "tunneling_config.cpi" file which is located in the folder:

at2custom/at2wsp folder.

In the "tunneling_config.cpi" file, there are 3 simple entries for configuring the AppViewXS

session to communicate with the Tunneling Servlet. These three entries are:

portalTunnelURL1 -- this variable represents the primary URL address to find the tunneling

servlet

portalTunnelURL2 -- this variable represents the secondary backup URL address for a backup

tunneling servlet

portalTunnelDebug -- this variable turns on or off the trace utitilty found in the AppViewXS

session when communicating with the Tunneling Servlet. Note that the

files created by the AppViewXS session is located on the machine running

the AppViewXS application.

An example file would look something like this:

portalTunnelURL1=http://mr-chan:8080/resqtunnelservlet/AppViewTunnel

portalTunnelURL2=http://mr-chan:8080/tunnelservlet/AppViewTunnel

portalTunnelDebug=false

If you do not want to use the tunneling servlet feature of this product, you can simply delete the

tunneling_config.cpi file from the at2wsp folder or comment out every line in the file. To

comment out each line, all you need to do is prepend the pound sign ("#") on each line. This will

revert the AppViewXS servlet to not use the Tunneling Servlet.

Jakarta Commons Logging Support

AVXSIntegrationAppWeb uses the Jakarta Commons Logging. Located inside

AVXSIntegrationAppWeb’s WEB-INF/classes folder, you should see the log4j.properties file.

This file contains the parameters used to configure the logging properties. All instances of the

logger are created using the Jakarta Commons LogFactory. Because we also package the log4j-

1.2.9 jar file, the default logging created by the LogFactory will be log4j. The log4j.properties

file is configured to display messages on the java console. The error message levels are set to

the ‘INFO’ level. To reduce the display of messages in the java console, you can change the

error message level from INFO to ERROR level. Currently the only locations in the code that

has the logging capability are located in the avxsintegration.utility and avxsintegration.helper

packages. The other locations did not need to have the logging capability. To learn more about

using the Jakarta Commons Logging, you can checkout:

http://jakarta.apache.org/commons/

Adding logging capability into your custom code is easy. Since the library jar files for the

Jakarta Commons Logging and the Log4j already exists in the WEB-INF/library folder, you can

just call these modules in your code. To start logging you will need to create an instance of a

logger. To accomplish this you would add the following line to your code:

public class CLASS

{

private static Log log = LogFactory.getLog(CLASS.class);

...

;

The Class.class represents the name of the class file that you are currently working on and would

like to log the output from. The Log class contains 6 various logging levels ranging from trace,

debug, info, warn, error, and fatal. Depending on what you want filtered out and displayed on

the console, you would use log.info(String message), log.trace(String message), etc… Then

using the log4j.properties file, you can enter the level of detail that you would like to see by

specifying the error level.

http://jakarta.apache.org/commons/

