Table of Contents

Visual CommBasic Overview

Introduction to Visual COMMBASICceieeiiiiiiiiiiiie e
WIting YOUT MACIO PrOGIAM ..uuueeeeeeeieiiiirieeeeeeeeeesistnteeeeeeesssassnsneeeeseeessasssnens
Visual CommBasic FUNAaMENLAISuvvviiiiiiiiiiiiiiccccccecece e
Visual CommBASIC TULOTIALuvuvieieiiiiiiccic e
Visual CommBasic and Other BASICSuuuuuiiiiiiiiiiiiiiiiieie e

How VCBasic Compares to Visual Basic and Word Basic.....................

Visual CommBasic Reference

e
o

% ReferenCe TOPICS ...
Conventions See Also Help Typographic Conventions............ccccoevvvveeennnee.
Object HandliNg S€ AlSO.......ccuuiiiiiieee e e e
Dynamic Data Exchange (DDE) Se€ AlSOc..oveiiiiiieiiiieieeiiiiee e

Alphabetical LiSt............oeiiiiiiiiieii e

Properties

Data Types and EXPreSSIONS.ccueiciiiiiiiiiiieiee e ciirree e e e e e s e siirvree e e e e e s anneees
Application Data TYPES (ADTS)...uuuiiiieeeiiiiiiirireeeeeeessinirireee e e e s s s snrneeeeees
Data TYPe CONVEISIONSevvieeeeeiiiieiieereeeeesssiieieeee e e e e e sesnnreneeeaeessennnnnens
DYNAMIC AITAYS ..eeiieeeeiieiitiieieeee e e eeetttee e e e e e e s s e e e e e e s s ssnnrarereeeeessnnrnneees
EXPIESSIONS...cciiitiiee ettt
Variant Data TYPEeeie it
Formatting Data for DISPIaYc.ueeieiiiiieiiiiiieee e

Formatting NUMDEIS........ooiiiiiii e
Formatting Date/TimeSoocuuiiiieeiee e
Formatting Numbers in Scientific Notationccccccceeeeiniiiiinen.
FOrmatting StriNGSouvveeveeeiiicie e

Controls and DIAIOGSuviiieeii it e e
Visual CommBasic Control Reference.........cccoocvvveiiiiiiee i
Creating and Modifying CONtrolS..........cccevvvee i
CONIOl PAIELEeeeeeiiiiiie e
Dialog BOXES SEE AlSO ...cuviiieiiiiiie ittt
Dialog Functions and Statements..........ccoceveeiiieee e

Property SNEEt..... ..o

Error Trapping and Handlingccoooiiiiiiiiiiiec e
Error Handling S€E AlSOccociiiiiiiiiieiiee e
Encountering RUN-TIME EITOIScuuivieeiiiiiiiiieeee e eeeinnee e e s e
TrapPabIe EITOISuviiiiiiee e e e e e e e e e e e e e
Trapping Errors Returned by VCBASIC.........ccvveeiiviiciiiiiiice e,
Trapping User-Defined (Non-VCBaSIC) Erfors.........ccccovvvveeeiniieeeeninnenn,

Visual CommBasic Editor

MeNUS aNd TOOIDAIScuuveiiiiiee e e e e e
MenUS aNd TOOIDAISuuiiiiiie et e e e eaaas
DEDUG MEBNU. ..ttt e

Edit Menu

13

13
13
13
16
16
16

20

20
21
23
24

Edit: AlIgNMENT MENUovviiiiiei e 56

FlE IMENU ... e ee e 57
HEID MEBNU .. 58
RUN IMENU...cei e e e e an s 58
RV oYY, =Y o T 58
WINAOW MENU ..ottt e e e e 59
(BT o 18 oo |1 o[RS PRUPT 59
Testing and Debugging an Interface...........ccccceiiiiiiiiiieeeeeeen 59
[T 018 o [I To U UERRR 60
Setting BreakpoiNtS.........ooccuiiiiiiie e e e e e 60
The STOP StatemMENt........ccoiiiiiiie it 62
Examples 62
SAMPIE MACIOS ..ottt e e e e e e e e e st e e e e e aeeeean 62
Program EXAmMPIEScoeeieiiiiiiiiieiee e a e nnees 63
UsSiNg the EXAMPIES.......cccoiiiiiiiiee et 64
Primary CONMIOlcoo i e e 75
Secondary CONLIOIS.........ccooiiiiiiiiiiiee e 75
Dialog BOX RECOIASceeiiiiiiieiiiiiee ettt 75
Ling CONtINUALIONcoiiiiiiiiiiiieieeeieieeeeeteserere e e e eeeeeareearareeeraearareaaeaaeanae 76
DDEINItiate FUNCLIONuueiiiiiiiiiiiiieie e 76
User-defined NUMEric FOrMALS...........coiiiiiiiiiiiiiiiieeeeeeeieeee e 76
Inserting Characters into the Output Stringccccvieeeiieeiiiiniiiieeeeenn. 79
Sectioning Numeric fmt Specifications............cccocvveveeei i, 80
GetCurValues StatemMENT.........coiiuiieeiiiiiee et e e seeeee e 81
GetObJECt FUNCHON ... e 81
CheCK BOX EVENES.....coiiiiieiiiiiiee ittt ettt 82
Check BOX MEthOASccoiiiiiiiiiiiiiie ettt 82
Check BOX PrOPErtiESccvvviiiiieee e ceciiiie e st e e e e s e sntenee e e e e e e 82
Clipboard Methods..........cooiiiiiiiiiiii e 83
COomMbBO BOX EVENLS ..ottt e e 83
Combo BOX MEthOAS.........cvviiiiiiiee et 84
CombO BOX PrOPertiES ...ttt 84
Edit CONrOl EVENLS ...ttt 84
Edit Control MethodS.ovviiiiiiiiie e 85
Edit CONtrol Properties.........cicciiiiciiiiieiie et e e 85
FOIM EVENLS ..ottt 86
FOIrM MEthOOScooiiiiiiie e 86
[0 g T o o 1= 11 SRR 86
L] (o TH] oI =0 YT o £ 87
Group BoOX MEtNOAScooiiiiiiiiiiiii ettt 87
Group BOX PrOPEITIEScceiiiiiiieiiiiiee ettt 87
Label CoNtrol EVENTS..........ueiiiiieiiiiiieiieeee e 88
Label Control Methods.........cuii e 88
Label Control ProPertieSoou it 88
LISt BOX BEVENLS ..coiiiiiiiiieei ettt 89
LisSt BOX MELNOUS........vviieiiiiiie e 89
LiSt BOX PrOPertieS......ccuviiiiiiii ettt 90
Option BULtON EVENTScvviiiiiiecc e e e e e e e 91
Option Button Methodscovvieiiiiiiicc e 91
Option BULtON ProOPErtieS.......uevvieieeiiicieiiiiieie e e sessireee e e e e e s s s sntenneeee e e e e 91
PiICture BOX EVENES.......ooiiiiiiiieiiiiie ettt 92
Picture BoX Methods..........ceuiiiiiiiiiiiiiieeee e 92
PiCture BOX PrOPEItIEScocuvieieiiiiie ettt 92
Push BULtON EVENLS.........cooiiiiiiiiiiiiiieeeeeeeeeeeeeeveee e veveeeveveesreesraenenrnenenenannes 93
Push Button MethOdS..........coiiiiiiiiiieiieee e 93

Push BUttON Properti€Scuuveeiiiiciiiiiiie e 93

Yol (o] | I == T V=T o] £ 94
SCroll Bar MEINOASueiiei et r e e e 94
SCrOll Bar PrOPEITIESveeieiiiiiie ettt 94
PO 1AY=L (N Y/ 0| AR 94
ChanQe EVENL ...t e e e 95
([To1 1 V=] o | AT 95
COMMON BVENT ..coeiii e 95
()] o] (@ T QYT o | ST 95
DEACHVALE EVENT......cvveiiiieii i e e e e e e 95
DragDrop EVENLccuvuiiiii it 95
(] = 1o [@ A =] gl Y Y o | 96
EditChange EVENLcccuuiiiieiie e e e 96
(€o] 1 Lo 1o ST A V/=] o | 96
KEYDOWN EVENL....ciiiiiiiiiiiiit et 96
KEYPIESS EVENL....ciiiiiiiiiiieit e 97
KeYUP EVENT ...ttt 97
(o= Lo [Y=Y o) T 98
LOSEFOCUS BEVENT ..ot r e 98
MOUSEDOWN EVENT....ouiiiiiiii e 98
MOUSEMOVE EVENL ...cvviiiiiice e 99
MOUSEUP EVENL.....coiiiiiiii i 99
RESIZE EVENL ...t e e e 100
T |1 (@8 1 To3 Q=T o | RS 100
STt (0] | I Y= | 101
LR TST V=] | T 101
L0 1g 10 T= 1o B V=T o | ST 101
WG [0 11 (=] g T\ (=T 1 [T T 101
(OF= 191818 To [0 1Y/ =31 0T Yo [101
(@A L=T= T 1Y, =1 Lo Yo 1R 102
DeleteString Method ... 102
Directory Method.............uvviiiiiiiice e 102
[=T 1Y/ 11 1 o Lo [SRS 103
EmptyUndoBuffer Method...........cccvviiiiiieeeeeece e 103
FINAString Method............ovvviiiiiii e e 103
FindStringExact Method..........cooviiiiiiic e 104
FormatLings MEethOdc.ouuueiiiiieeeeeee et e e 104
GetData MENOM..........eieieeee e e 104
GetFormat MEthOoooveeeee e e 105
GetLineFromChar Methodoooieuiiiiiieeeee e 105
GetLiNETEeXt MEtNOd.........cveiiiee e 106
GetSel MEthOdeeeeeeeee e 106
GetSelCount MEthOduueiiiiiiiieiee e 107
GetTeXt MENOAiiiiiiieeee e e 107
GetTeXt MENOAiiiiiiieeee e e 108
INSertString Method...........oovvi i 108
[0 =0 [N 1Y/ =Y 1 1 (o Lo IS 108
LoadCursor MEthOdoooeuuieiiiiiiieeeee e 109
LoadPicture MEthOd..........ooeueiiiiee et 109
MOVE MELNOMo e e e e e e eees 109
REfreSh MEthOd.........cooeeeeieeee e e 110
ReplaceSelection Methodc.euviiiiiiiiiiii e 110
SCrollTEXt MEINOceeeiiiee e 111
SelectString Method..........ccuvviiiiie e 111
SelltemRange Methodccoiiiiiiiiiiiiiiie e 112

SetCaretindex Methodoooiiiiiiiiiiii e, 112

Y11 B = = WAV, (<Y 1 Lo Lo [112

SetFOCUS MELhOd ... 113
SetReadONnly Method...........cuuiiiiiiiiiii e 113
SetSel MEthOd.ceiiiiiiiice e 114
SetSelection MethOd.........cuviiiiiiie e 114
SetTeXt MENOM......ceiiiiii e 115
UNdO Method.......coooii e 115
UnloadForm Method ... 116
ZOrder MethOd..........oveiiiiiiicce et 116
o—
101 01T o 2 = o) PSR 116
CHPDOAIA. ... 117
=]
100] 0] o To 11 =70) G PP 117
Edit CONLIOL.....ciiiiiiiii s 118
2F
=l FOIM CONIOL......vveiececeeeee et en s, 118
el
= Group BOX 1.ttt ettt en et 119
(= o<1 o] | o | ISP 120
:I IS B T0) 120
Opt|on = T 0] o 121
EI PICLUIE BOX ..vvvvieiiiiiiie e ittt ettt ettt e et e et ee e st e st e e s ennneeas 122
Push 2101 (o] o 122
:l . SCroll Bar CONtrOlSccoviiieiiiiiiee e 123
AlIGNMENT PrOPEITY.....eeiiiiiiiie ittt 123
AULOSIZE PIOPEITY ...eveeie ittt 124
BacCKCOIOr PrOPEITY ...ttt 125
BOrderStyle ProPerty...... ...ttt 126
CaNCEl PTOPEITY ..eeeeeiieeieieiee et e e 127
(0T o] 110 T = o] 0= 1 |V U PRRRR 127
COlUMNS PIOPEIMY oeeeeeeii ittt e e e 128
(O70]1VA /o 11 g I =l (0] o1=T ¢ V2SR URRRR 128
(101 £ST=T I = o] =] 1 2RSSR 128
LISE DOX ettt 129
(LU £=To T o £0] 01T SRR 129
Default PrOPEITYcoouiiiieiiieie ettt 130
PUSH DUON ... e 130
DragCursor ProPerty ...ttt teeeeeeeeneeees 130
DragMode ProPerty............eeeiao it a e 131
ENADIE Property ...coooiieieeeee e 131
EXpandTabs PrOPertyueeeeeciiiiiiiiiieee e esiiree e e e e e siiireee e e e 132
[0 11 ot] a1 | R TPRPRTPRI 134
o)) 05T0] (o =d (o] 11 o Y20 SRS 134
o))11 = 1T Todl o (] 0 1= 1 PSR 135
FONINGME PrOPEItY.....covveiiieiiieieieeeieeeeeeeeeee et eeeereeeeerernennes 135
FONtSIZE ProPerty ..ocooeeeeeee et 136
FONtSEHKETRIU Property........ccooiiiieiiiiiiie et 137

FONtUNErIiNg PrOPEItYveieiiiiiiee ettt 138

0] (=1 @d0] (o] gl = (o] o 1= 1 Y/ EER 139

FOormHeIght Property..........ccevee i 142
[0 1 [143
FOrmWIidth Property ... 143
[0 1 [143
HasSCaption PrOPErtY..........ccoi i 143
[0 11 0 TP T PP P PP PP TP TPTRTTTRTRTRTRN 144
HEIGOT PrOPEItY ...ccco ittt 144
HelpFIleNamMe PrOPEItY......ccciiiiiiiiiiiieeee e e e e 142
FOIM bbb 146
[(=11 01| D o (o] o 1=« Y25 SRR 146
HideSelection PrOPertY ... e e seee e 145
L 1V o B (T 0 1= & SR 148
[CON PrOPEITY ..t 149
[0 1 [150
LargeChange PrOPEItY.........eeiiiiiiieeiiiiiee ettt 150
SCIOI DA ..o 150
T (o] o111 TP RTPT O 150
MaAX PIOPEITY ..ottt ettt e e bneneeenenee 149
SCIOI DA ... s 149
MaXBULION PrOPEITY ..vvuiiiiiieiiiiiie ettt e e e 149
[0 11 ot] a1 | R TPRPRTPRI 153
T T o] 1= 1 SRS 153
SCIOI DA ... 153
oY ST0Tx o] o T = o] o= g SR 153
[0 1 [154
MUIEILING PTOPEITY ..ottt 154
Lo [0 o0] 11 (] PSR 154
MUItISEIECE PrOPEITY ...t 154
S 0 o o) G R PTPPPRRTTR 155
NaME PrOPEITYcoeeiiiiiiiiiiiiii ittt ebebeeaeeees 155
PasswordChar PrOPerty ... icciiieeee et e e e e 156
[0 11 ot] a1 | R TPRPRTPRI 157
o (] =T o] 1= o SRS 157
PictureCrop PrOPEIY.......uviieiie et 158
LT (0] 01 o 1N oo)RR 159
PictureJUstify PrOPEITYeoviiiiiiiiiiiiiec et 159
GrOUP DOX . 160
SCrOlIBArS PrOPEITY ...couveieiiiiiite ettt ettt 160
SMallChange PrOPEIYuuiiiiiieiiiiiiie et 160
SOMEA PrOPEILYeeiiiiieieieiieie ettt e e e e e e 161
1670] 101 0T 1 oo) G U TP RRRTR 161
Y07/ (=3 d o] 0= 1 SRR 161
(00]] o To 1N ¢ To) G SRR 162
SYSMENU PrOPEITY ...ttt 162
O M e 163
BIE= o] [g0 (o0t ql = o] o= 5 S 163
LI 1 015] (o] o 31 d (o] 1= £ 2 S 164
Tag PrOPEITY ..ot 164
TEXE PIOPEITY ..ottt 165
1070] 121 0o 1 oo) USSR 167
1 (To I (o] o 1=] 4 Y TP TR 167
[0 11 0 PP P TP TP PP TP TPPRTRTRTRTRT 167
BT =T d (o] 1T o SR 168
FOIM bbb 168

TOP PIOPEITY et 168

RVAY 2T ki T =] 0 T= o R 168

WiNdowState PrOPEILYccceeiiiiiiiiieeie e s e st e e e st e e e e e e e 169
[0 1 [170
WOrdWrap PrOPEITY ...cooeiiiiieeiiiiee ettt 170
= o S PRSR 170
CrtAttr Function [VCBaSIiC EXIENSION]cevvieiiiiiiiiiiieiieee e 170
CrtCls Statement [VCBasic EXteNSION]........ccccuuviieiiiiiiiiiiieieeeee e 171
CrECOl FUNCHONetiiiiiieee ettt e e 172
CrtCopy Function [VCBasic EXteNSION]ccccvveeeeeeeiiiiiiieeeee e 172
CrtEmit Statement [VCBasic EXtension].........ccccoveereeeiiiiiiiiineeee e 173
CrtFieldSearch FUNCHONoviiiiiiie e 174
CrtGetP FUNCHON......eiiiiiiiiie it 175
CrtPosition Function [VCBasic EXtension]........cccccccvveeviviiciiieeenee e 175
CrtQUETNYS FUNCHON......uiiiiiii it 176
CrtRow Function [VCBasiC EXtENSION]........cccuvvieiiiiiieiiiieeeniieee e 177
CrtSearch Function [VCBasic EXtENSION]covcveeiiiiiiiieiiiiee i, 177
CrtSetCursor Function [VCBasic EXteNSIiON]cceeeviiiiiiiieenieennnnnes 178
CrtTrigger$ Function [VCBasic EXENSION]ccoceerieineenee e 179
CrTYPESEt$ FUNCLON ...ttt 179
Emit Statement [VCBasIic EXtENSION].........cccccvveeeeeeee i 180
EmitBrk Statement [VCBasic EXtENSION]ccccevveeeeeiiiiiiiiiieee e 181
FLQUEIYS FUNCHION ..eoveiieiiii ettt 181
FtSet$ Function [VCBasiC EXtENSION].......ccueeeiiiiiiieiiiiieee e 182
FtTrigger$ Function [VCBasiC EXtENSION]cooueeeeiiiieeeniiiieeeiiieeeeens 183
FLTYPESEtP FUNCHON.....coiiiiiiiii it 184
lolnput$ Function [VCBasIiC EXtENSION]........ccccveiiieeiiieeiiee e 185
[OQUETYS FUNCHION.eiiiiiieiiieeie ettt 186
[0SELE FUNCHON ...cciiiiiie et 187
loTrigger$ Function [VCBasic EXteNSION]c.covceveriieniieiiniee e, 188
[0TYPESELE FUNCHON ...ttt 189
RUNMACIO StatemMeNntooiiiiiiiiiiiiiieeeieeeeeeeeeee s 189
Shutdown Statement [VCBasic EXtension]........cccccccveeeeiiiiiiiieeeeeeeeens 190
WaItCrtCursor FUNCHONccoiiiiiee e 190
WaitCrtUnlock FUNCLONcooiiiiiiiiiiic e 191
WaitDCD Function [VCBasic EXtENSION]........cuvvereeririiiiiieeeeeeeee s 191
WalitKeystrokes FUNCHONcccvviiiiiie e 192
WaitSilent State@mMeENt.........ooveiiiiiie e 192
WaitStr Function [VCBasic EXIENSION]........ccooriiieeriiiiieiiiiee e 193
WaitTime FUNCLON ... 193
TEIMINOIOQY ittt et e e e e e e e eeeaa s 194
YOUE FIFSE IMACTO.eeteiiieie ettt e s 196
Step 1. Creating the user interface.cccccoiiiiiin e 197
Step 2. Setting the controls’ properties.cocccvvveeeee i 198
Step 3. Writing the SCrIptS. ...vvviiiie e 200
Step 4. RUNNiNg the MACIO0.cccoiiiiiiiiiiecc e 202
ClASS LISt..ceiiiteiieiiiiiie ettt 209
Clipboard EXamPIe.......ccciecviiieieiee et e e s e e s e e e e e 209
Environ Function EXampleccccvveiiieeiiiiiieeeee e 227
INPUE FUNCHION ..o 241
INPUL STAIEMENT.......eieeee e 241
Line INPUL STAtEMENT......cooiiiiiie e 248
= SO RPRUPRI 251
Rem Statement EXample ... 270
Tabh FUNCHON . e 289
Data TYPES SEE AlSOuuiiiiiiiee ittt e e 298

Step 1: Define a dialog bDOX......cccooiiiiiiiiiiiiec e 300

Step 2: Write a dialog box fuNCtioNcceeeeiiiiciiiiiee e 300

Step 3: Display the dialog bOXcoccviiiiiiiie e 300
Step 1: Create an object variable to access the application................. 300
Step 2: Use methods and properties to act on objects.cccoveeeeee. 300
Option 1: Trap error within body of codecccveviiiiiii e, 301
Option 2: Trap error using error handlercccccceiiiiiiiiii s 301
Derived Trigonometric FUNCLONSccooiiiiiiiiiiieee e 301
Assert Statement [VCBasiC EXtENSION]..........eeeiiiiiiiiiiiiiiieeeeee e 302
Help Typographic CONVENLIONS.........cceiieeiiiiiiiiiieee e e 309
Other Ways to Halt Programs..........cccovvieeeee i 309
AppClassActivate Statementcceeeeeiiiiiiiiiieeee e 311
" AbS FUNCLION EXAMPIEeviiieiiie et 312
" AppActivate Statement EXample.......cccccoeeeiiiiciiiiieece e 312
" ASC FUNCLION EXAMPIE....cciiiiiiiiiiiiiie e 312
" AtN FUNCHION EXAMPIEcoooiiiiiiiiiie e 313
' Beep Statement EXample.........oouiiiiiiiii e 313
' Begin Dialog... End Dialog Statement Example..............cccccceieinnnes 314
" Button Statement EXampPle........oooi i 315
'‘ButtonGroup Statement EXample ... 316
" Call Statement EXample........ccooeeiiiiiiiiiiiiecc e 316
' CancelButton Statement EXamPIeoevveeiiiiiiiiiieecee e 317
' Caption Statement EXample.........cccciiiiiiie i 318
" CCur FUNCLION EXAMPIEvvvveeeeeeieiiiiieece e e e 318
" CDDbI FUNCLioN EXAaMPIE.....ovuiiiieeeieiiiieieee e e e e sienee e e e e 319
' ChDir Statement EXampPle.........ccoovuiiiiiiieee i e e 319
' ChDrive Statement EXample..........oooiiiiiiiiiiiiece e 320
' CheckBox Statement Example.........oocceiiiiiiiiiiiiie e, 320
" Chr FUNCHION EXAMPIE ..o 321
" CINt FUNCLON EXAMPIE ... 322
" Clipboard EXamPIeoouiiiiiiieaee e 322
" CLNg FUNCLION EXAMPIEuiiiiiiiiiiiiiieieee e 322
' Close Statement EXample...........ooociiiiiiiiei it 323
' ComboBox Statement EXampleccccceveeeiiiiiiiiiiieece e 324
"Command Function EXample..........ccooveeieee i 324
' Const Statement EXamMPIE......cccco i 325
" CoS FUNCLION EXAMPIEevviiieeiee e 326
' CreateObject FUNCtion EXamPIlecceeiiiiiiiiiiiiiieeeieee e 326
' CSng FuNnction EXample.........oooii e 327
" CStr FuNction EXampIec..oeiiiiiiie e 328
'CStrings Metacommand EXample..........coiiiii e 328
'CurDir Statement EXamMPIe........oooiiiiiiiiiiee e 328
" CVar FuNCction EXample ... 329
" CVDate Function EXample..........ccccciiiiiiie i 329
" Date FUNCLON EXAMPIEuuiiiiiiei it 330
' Date Statement EXampleooooiiiiiiiiiiic e 330
' DateSerial Function EXample.........cccoveieieeeiiiiiiieeeee e ceivieeee e 330
' DateValue Function EXample.........ccccveeereeeiiiiiiiiieeece e e 331
"Day Function EXamplecovveiiiiiiiiiiinee e 332
' DDEAppReturnCode Function Exampleccccceviiiiiiniiicennieenn, 332
' DDEExecute Statement EXample ..., 332
' DDElnitiate Function EXample ... 334
' DDEPoOKe Statement EXampleouuiiiiiioiiiiiieee e 335
' DDERequest Function EXample ... 336
' DDETerminate Statement EXamplecooccvvvieeieeiiiiiiiiieecce e 337
' Declare Statement EXample.........ccccviieiiie e 338

' Dialog FUNCLION EXAMPIEcoeeiiiiiiiiieeecc e e 339

' Dialog Statement EXampPle........c.coocvvviiiiieee i e e
' Dim Statement EXamPle.......oeevieeii it
" Dir FUNCLION EXAMPIEoiiiiiiiiiiiiie s
' DIgControllD Function EXamplecooviiiieiiiieeiiieeeieee e
' DIgEnable Statement EXamplecccccooviiiieiiiieee e
' DigEnable Function EXample............c..ueeeiiiiiiiiiiiieiiieeee e
' DIgENd Statement EXample ...
' DlgFocus Function EXamplec..uveeiiiieiiiiiiiiiieee e
' DigFocus Statement EXample.......cccvvvrieeeiiiiiiieieee e
' DlgListBoxArray Function EXample.......ccccccoovviiiiiieiee i
' DlgListBoxArray Statement EXampleccccovveeieeiiiiiiiiiineece e
' DlgSetPicture Statement EXample........cccooviviiiiieeieieeeiiciiieeeee e
' DlgText FuNCtion EXamPIEccceeeiiiiiiiieiee e n e
' DIgText Statement EXamPle..........coooiiiiiiiiiiieiiee e
' DlgValue FuNCtion EXampPleeoieiiiiiiiniiieeeieeee e
' DlgValue Statement EXample ..o
' DlgVisible FUNCtion EXample.........ocuiiiiiiiaiiieieecee e
' DlgVisible Statement Example.............cooiiiiiiiiiiieeeeeee
" Do...Loop Statement EXampleoooviiiiiiiiiiiiieeeiiieeeee e
' DoEvents Statement EXampleccceveeeeeiiiiiiiiiiiece e
' DropComboBox Statement EXampleoooccvviieiiee e
' DropListBox Statement EXamPplecoveeeiiiiiiiiieeeee e
" Environ Statement EXample.........ccccvviiieieee i
"Eof FUNCLION EXAMPIEovviieiieee e
" Erase Statement EXamMPIE.. ..o
"Erl FUNCHON EXAMPIEoooiiiiiiiiiiic e
"Err FUNCLion EXample ...
"Err Statement EXAMPIEoeviiiiiiiie e
"Error FUNCioN EXamPIe........ooiiiiiiiiiiieiieiee e
"Error Statement EXamMPIe ...
" EXit Statement EXamMPIEoooii e
"EXP FUNCLION EXAMPIE ...t
" FileAttr FUNCLION EXAMPIEvvvvieeei it
' FileCopy Statement EXample........ccvvveiiereeeiniiiieeeee e e e e
' FileDateTime Function EXampleccceeeeiiiiiiieiieee e
" FileLen Function EXample...........coooviiiiiiiiii e
"FiX FUNCLioN EXamMple ...
" For...Next Statement EXample ...
" Format Function EXample ...
" FreeFile Function EXample ...
" Function...End Function EXample ...
"FV FUNCLION EXAMPIE ...t
' Get Statement EXampPlecooeeeiiiiiiiiiiie e
' GetAttr FUNCioN EXaMPIEvvvveeeei e
" GetField FuNction EXample ...
' GetObject Function EXamplecccvvvveveee i
" Global Statement EXampPle.......ccoovicuiiiiieie e
' GOTO Statement EXamMPIE......ccceoiiiiiiiiieee e
' GroupBox Statement EXampPle..........ccovveiiiiiiieiiiiie e
"Hex FUNCON EXAMPIEoccuviiiiiiiiiie e
"Hour FUNCHION EXAMPIE.........ooiiiiiiiiiiiiiiee e
"If...Then...Else Function EXamplecccccoiiiiiiiiiiiiniiiieeee e
Include Metacommand EXample...........coouiiiiiiiainiiieee e
"Input FUNCLION EXAMPIE.....uviiiiiieiii i
" Input Statement EXamMPIEooooiiiiiiiiiieee e
" InputBox Function EXample ..o

"INStr FUNCON EXAMPIE ...eeiiiieiiiee e 392

"INt FUNCION EXaMPIE.......cvviiiiieeeei e 394
"IPMt FUNCLION EXAMPIE ... 394
"IRR FUNCLioN EXamMPIEoocuiiiiiiiii e 395
1S Operator EXAMPIEcooiiiiiiiiiieie e 396
"IsDate FUNCtioN EXaMPIEccooiiiiiiiiiiiiie e 397
"ISEmpty FUNCLION EXaMPIE....ccooiiiiiiiiiiiiiee e 397
" IsMissing FUNCLION EXamMPIe.......cooiiiiiiiiiiiec e 398
"ISNUll FUNCLION EXAMPIE....uiiiiiie et 399
"IsNumeric Function EXampleccoeeeeeeeiiiiiiiiiieece e 400
"Kill FUNCLION EXAMPIE........oiiiiiieeeii et 400
"LBound FUunction EXamPpPIleccooicieiiieiiee e e e 402
"LCase FUNCtion EXamMPIEccceeeiiiiiiiiiiiiie et e e 403
" Left FUNCION EXAMPIE....ccoiiiiiiiiiiiiie e 403
"Len FUNCLiON EXAMPIE......cooiiiiiiiiiiie e 403
' Let (Assignment Statement) EXample.........ccccovvieeiiniieeenieeee e, 404
" Like Operator EXamPIe.ccouiaiiiiiiiiieiae i 404
" Line Input Statement EXampleoueeiiiiiiiiieee e 405
" ListBox Statement EXamPpPle ... 406
"Loc FUNCHION EXAMPIE.......ooviiiiieee e 407
"Lock FUNCLION EXAMPIE ...uviiiiiiei et 408
"Lof FUNCtion EXamPIe........c..uvviiieeeiiiiiieeeec e 409
"Log FUNCtion EXamPIe..........eveiieeiiiiiiiiiiee et e e 410
' Lset Statement EXamPIEcoveeeiiiiiiiieie e 410
"LTrim FUNCtion EXamMPIEcooviiiiiiiiiiiieee e 411
" Mid Statement EXamMPIEoooiiiiiiieiiiiee e 411
" Mid FUNCHION EXAMPIE....c.couiiiiiiiiiiie e 412
" Minute FUNCLION EXaMPIE.......cooiiiiiiiiiiieiee e 413
" MKDir Statement EXamPIe........coooiiiiiiiia e 414
" Month Function EXamPple..........oooiiii e 414
' Msgbox Function Example 'This example displays one of each type of message box.
.. 415
' Msghox Statement EXamplecccvvveereeiiiiiiiieecec e 416
"Name Statement EXamplecoocviiiieieei i 416
"New Operator EXamPIEueeiieeiiiiiiieeeeee e e e sninnee e e e e e e 417
NoCStrings Metacommand EXample.........cccccevereeeeniiiciiieeeee e 417
" Nothing Function EXample ... 418
"Now FuNnction EXampleoooiiiiiiii e 419
"NPV FUNCtion EXamMPIEooiiiiiiiiiiiiiee e 419
"Null FUNCEION EXAMPIE ..o 420
" Object Class EXAMPIEuiiiiiiieeiieeeece e 421
" OCt FUNCLION EXAMPIE ...t 422
" OKButton Statement EXampleccceveveeiiiiiiiiiieecec e 422
" On ..Goto Statement EXamplecccevveeeeeiiiiiiiiiieece e 423
" On Error Statement EXample ... 423
" Open Statement EXamPleooeoveiiiiiieiee e 424
' OptionButton Statement EXampleccveeeviiiciiiieeeie e esciiiieeeee e 426
' OptionGroup Statement EXamPpPlecovveeeiiiiiiiiiieee e 426
' Option Base Statement EXample ..., 427
' Option Compare Statement Examplecccoooiiiiiiiiiiniiienieen, 428
' Option Explicit Statement Example........ccocveiiiiiiiiee e, 429
" PasswordBox Function EXample ... 429
' Picture Statement EXample.........ooocuviiiiiiiiiiiiiee e 430
"Pmt Function EXampleooviiiiiiiiiiiiiie e 430
"PPmt FUNCtion EXamPIe........ccoeeiiiiiiiiiiiiie et 431
" Print Statement EXamMPIE.......coiioi i 432

10

" PushButton Statement EXamplecvveeiiiiciiiieeee e ccieieeee e
" Put Statement EXamPle........oeevveoiiiiiiiiieeee e
"PV FUNCLion EXample ...
' Randomize Statement EXample.........ccccoiiiiiiiii e
" Rate FUNCtion EXample ...
' ReDim Statement EXample ...
"Rem Statement EXampPIe ...
" Reset Statement EXamMPIe.......oooo i
' Resume Statement EXample.........cccovivieie i
" Right FUNCioN EXamMPIEcvvvvvieiiiiiiieeece et
" RMDir Statement EXampPle...........oocciviiieiiee e
"RNd FUNCLON EXAMPIEeeviiiiiiee e e e
" Rset Statement EXamMPIE... ..o
"RTrim FUnCtion EXampPle.........coooiiiiiiiiiiciiieee e
' Second FUNCtion EXamPIeccueiiiiiiiieiiiieiece e
" Seek FUNCtion EXampPIecooooiiiiiiiii e
' Seek Statement EXample ...
' Select Case Statement EXample ..o
' SendKeys Statement EXample.............ooviiiiiiiiiiiiieiieeea e
' Set Statement EXamPIe........ueevieiiiiiiiiiiiiee e
' SetAttr Statement EXample ...
' SetField Function EXampleoccciiieeeee i
' Sgn Function EXampleeeeviiiiiiiiiieee e
" Shell FUNCION EXAaMPIE......uuiiiieeiie e
" SiN FUNCLION EXAMPIE ..
' Space FuNCtion EXamMPIecccveiiiiiiiiiiiiiiee e
" Spc FUNCtion EXamMPIeoc.oeiiiiiiiiiie e
' SQLCIlose Function EXamPpPleccooiviiiiiiiiieiieeeeieee e
" SQLError Function EXampleccuuuiieiiiiiiiiiieeeieeee e
' SQLExecQuery Function EXample ...
' SQLGetSchema Function EXample ...
' SQLOPpEeN FUNCtion EXample.........cccciiiiiiieeieicciieeee et
' SQLRequest Function Example.........cccccceeeiiiiiiiiiiieieee e
' SQLRetrieve Function Example..........ccccceeeiiiiiiiiiiniie e
' SQLRetrieveToFile Function EXample.........cocccvveree v
' SAr FUNCLON EXAMPIE ...
' Static Statement EXamPIeccvvviiiiiiiiiiiieee e
' StaticComboBox Statement Example ...,
' Stop Statement EXample........coooeiiiiii e
" Str FUNCLION EXAMPIE ...
' StrComp Function EXample ...
' String FUNCtion EXamPIecoooiiiiiiiiiiiie e
' Sub...End Sub Function EXampleccccceiiiiiiiiieeie e
' Tab Function Statement EXample........cccccoviiiiiiiiieeie e
"Tan FUNCLON EXAMPIE ...
" Text Statement EXamMPIE ...
' TextBox Statement EXample.........ccuvviiieeeee i
" Time FUuNCtion EXamPIe........cueveeiiiiiiiiiieee e
' Time Statement EXample ...
" Timer Function EXamPIeccooeiiiiiiiieciie e
' TimeSerial Function EXample ...,
' TimeValue Function EXampleeeeeiiiiiiiiiiiieeece e
"Trim FUNCLION EXAMPIE ..ot
"Type Statement EXamPIEcevi oo
' Typeof Statement EXample ...
"UBound FUNCtIoN EXaMPIE......ccccoiiiiiiiiiiee et

"UCase FUNCLION EXAMPIE.....cciiieiii e e e 473

"Unlock FUNCLION EXAMPIE.....ceiiiiiii et 474
"Val FUNCtion EXample ... 475
"VarType Function EXamPIec.eeiiiiiiiiiiiiiieeieee e 476
" Weekday FUNCtion EXample...........cooiiiiiiiiiiieiiieee e 477
While...Wend Structure EXample ... 478
"Width Statement EXample..........ooooiiiiiiiiiiiiiiee e 480
With Statement EXamPpPle ... 480
Write Statement EXample ... 481
"Year FUNCLON EXAMPIEoviiiiiiee it 483
CrEAL EXAMPI..ueveeeie et 483
1011 (070] o)V == 11 1] o [SRR 483
CHEMIt EXAMPIE 1eveeeiee it e e e e rnaee e e e e e e 484
CrtFieldSearch_EXample ... 484
CrtQUErY EXAMPIE. ..ottt 485
CrtROW EXAMPIE ...oeeiiiiee e 486
CrtSearch EXampPIecoo i 487
CrtSetCursor EXampleoeeiiiii e 488
CrTrigger EXamMPIeooo i 488
CrtTypeSet EXamPle........cccuviiiiiii et 489
EMIt EXAMPIE ..uviiiiii et 489
FLQUEIY EXAMPIE ..o 490
L ST = U]][TSRS 491
(011 (1=l ez T 4] o] PSSR 492
CrtPOoSItion EXAMPIE......ccceiiiiiiie e 492
FETrigger EXAmMPIE........ueiiiiiieee e 493
FITYpeSet EXamPIE.. ..o 494
[OINPUE EXBMPIE ... 495
IOQUETY EXAMPIE ...t 496
[0SEt EXAMPIE .. 497
0Trgger EXamMPIE ... 497
[0TYPESEt EXAMPIE....ouiiiiiiiii i 498
WaitCrtCursor EXampleooooiiiiiiiiie e 498
WaitCrtUnlock EXamPleccovieiiiiiiiee e 499
WaitDCD EXAMPIEovvieeeieee i 500
WaitKeystrokes EXamplecccuivieiiiie i 501
WatSIlent EXamMPIEoocuviieiiiie e 501
WaILST EXAMPIE .o 502
WaitTime EXamMPIecoooriiiiiii e 503
D 1B e 1 1 4]][SRR 503
AppClassActivate EXample............ccoooiiiiiiiiiiiieee e 504
ME EXAMPIE ..o 504
(011 (Of0] I =TC: 11 1]][TR URRRRR 504
QuickSort Program EXampleccccoiiieeiee e 505
Bitmap Viewer Program EXample........cccccooiiiiiiiieeiee e 509
Find Files Program EXample...........cccvvveeeiiiiiiiiiieee e 510
Greatest Common Factor Program Exampleccccoovcvieeeeeeeiiininnns 514
Hello World Program EXample..........cccceeeiiiiiieiieee e 516
ClIPDOAIA.......eeeeeie 518
NUMEFC OPEIALOIS ... ttieeeitieieeiiitiee ettt ettt e e sibre e e e sbneeeeans 519
SING OPEIALOIS.....eeiiiiiiiiie ittt 519
Comparison Operators (Numeric and String)cceeeeeviiiiiiiieeeneeennnnnns 519
LOGICal OPEIALOrS.cceeveiieeiee ettt e e e 519
Call DY FEfEIENCE .. .eeiiie e 520
(o001 (o] I 1 2SS 520
(o F= 1L To [T 011 (o] IR PSSR 520

11

12

[ADEL. ... e 520
MELACOMMEANTooiiiiiiiiiiiiiiiiieee e eeeeeeee e e e e eereseresereberersrerarsrerersreraranes 520
= 1 T PN 520
PrECEAENCE OFUEN ...ttt e s e e e 520
LS10] o] o] foo | =10 o [T TR 521
TYPE ChATACLEN ... 521
VAITY P e 521
SEE AlSD ittt 522
SEE AlSO ittt 522
F N £ = | TSP USPPPPPRNS 522
NUMDEIS ...t ee e 522
L@] 1= o £ SRR 522
RECOIASoiiiiieieieeeee ettt ettt e b e aebebebebebsbebsbsbebarsbarerseeenennes 523
SHIINGS ettt 523
VATTANES ... e e 523
SHOWSTATUSDIALOGcoviiiiiiiiiee ettt seee e siee e siaae e snaaee s 525
STATUSPAUSEooiiiiiie ettt ae e snaeeas 525

Visual CommBasic Overview

Introduction to Visual CommBasic

Visual CommBasic allows you to create powerful macro programs to automate OutsideView processes using
VCBasic, an event-driven scripting language. With Visual CommBasic, you can write macros that
OutsideView users can execute, either selectively by opening macro files or automatically via toolbar
buttons.

Visual CommBasic has the following advantages:

e V/CBasic is very similar to Visual Basic. You don't have to learn a proprietary programming language
to write macros. The operation, structure, syntax and commands are similar to those you're accustomed
to in Visual Basic. We have created a comparison of Visual CommBasic and Visual Basic for you.

e Commands and functions are provided for accessing session data, transferring files, and changing the
I/0 properties of the session. These emulation manipulation commands give you complete control of
OutsideView.

e VCBasic includes all the tools and functionality you need to write and debug your macro application.
It's not just a language, it's a development platform.

e We’ve even included some complete, useful sample macros so that you can see how they work.

What is a macro?

A macro is the term used for a program developed specifically to work with OutsideView. A macro
is normally used to perform tasks automatically for the user. Macros can perform complete (or
closed) tasks, such as connecting to a host system, logging on, downloading a file, uploading a
separate file, and logging off.

Macros provide you with tremendous flexibility. You can access all the communications power of
OutsideView and also perform tasks that can't be done within OutsideView such as reading and
writing data files. Macros can also be used to perform tasks without user intervention. For example,
an unattended PC could dial into a remote system and download a file late at night, when connect
charges are lower.

Writing your macro program

To write your macro program in Visual CommBasic, use the following procedure:

1. Create a new form (using File:New).
2. Design your form by creating controls on it and setting their properties.
3. Write scripts for your form using the Script Editor.

Test and debug the form and its scripts with the integrated debugger.

This procedure is normally iterative: repeat as necessary when adding forms, and their associated
controls and scripts, to your project.

Visual CommBasic Fundamentals

Visual CommBasic is a comprehensive development environment that supports many of the constructs found
in modern programming languages. Presented here are some of the core concepts of forms-based,
event-driven programming. For a more thorough description of these techniques, please refer to the
Microsoft Visual Basic Programmer's Guide.

13

Objects, Properties, Events and Methods

Visual CommBasic incorporates many of the concepts of modern programming environments
including objects, properties, events and methods.

Objects

An object is simply a combination of code and data that may be treated as a unit. Examples of
objects in Visual CommBasic include forms and controls.

Visual CommBasic will create unique default names for objects as they are created. For example, as
button controls are added to a form, the first button will be named "button1", the second "button2",
etc. While there is no error using these default names to access the objects, your code will be much
more easily understood and supportable if descriptive object names are used. These descriptive

names should be assigned to all objects for which event procedures are to be written before you start
writing code. The object naming conventions of Visual Basic are used throughout this introduction.

Properties

A property is the named attribute of an object. Just as a bicycle would have color, type (mountain or road) and
speed (10, 16, 21, etc.) properties, a Visual CommBasic form object has properties that define its size, colors
and caption. An object's properties may be set at design time using the Property Sheet. Properties may also be
accessed at run time using the syntax objectname.property. For example, the following commands will read
the state (of the property called "value") of an option button named "optChoice", and then clear its state:

intRet = optChoice.value

optChoice.value =0

Events

An event is any action recognized by an object. When a user clicks on a push button, for example, the button's
click event is triggered. When an object in a Visual CommBasic macro detects that one of its events has
occurred, it automatically invokes the procedure corresponding to that event. The naming syntax for event
procedures is objectname_eventname. For example, when the button named "cmdEXxit" is clicked, the code in
the procedure named "cmdExit_click" is executed.

There is no need to manually create the SUB...END SUB statements for event procedures. The
Visual CommBasic script editor automatically generates the procedure template, including the
correct event procedure names, by selecting objects and events in the script editor. As with other
SUB procedures, an event procedure may also be called from any other procedure in your macro.

Methods

A method performs an action on a particular object. The syntax for executing a method,
objectname.methodname, is similar to the syntax for accessing a property. The Addltem method, for
example, may used to add an item to a listbox control. For a listbox named IstFiles, the command

IstFiles.Addltem "NewFile"

14

will add the string "NewFile" to the listbox contents.

Event-Driven Programming

An event-driven application executes code in response to user, system or program-generated
actions. A macro's form and its controls each have a fixed set of events to which it can respond.
When one of these actions occur, the associated event procedure is invoked. It's up to you, the
developer, to determine how each object responds to its events.

A typical Visual CommBasic macro operates in the following manner:

1. When the macro is started, the form is painted and the form's load event procedure is
executed.

2. An event occurs which may be generated by the user, the system (e.g., a timer event), or by
the macro itself.

3. If an event procedure has been defined for that event, it is executed.

4, The macro goes into an idle state waiting for the next event.

This model of operation is fundamentally different than that of CommBasic (the macro language
used by OutsideView 4.x), which follows a "procedural” model. In procedural applications,
program execution flow is completely determined by the code. Execution begins at the first line of
executable code (the first line of SUB MAIN in CommBasic) and follows the path determined by
the programmer. Event-driven applications such as Visual CommBasic macros, however, are
developed from the perspective of responding to the actions of the user.

VCBasic Files

All macro components created by the Visual CommBasic development environment are saved in a
single file with a ".vcb" extension. This file, any text files included in the macro via the $Include
command, and any pictures used by the Picture Box control need to be distributed in order to
provide the macro to other OutsideView users. If it is necessary to restrict modification of the
macro, the .vcb file may have its read-only attribute set or be placed in a folder with read-only
access.

The File Open dialog displayed when the user selects Macro/Run Macro from OutsideView or
File/Open from the development environment displays the contents of the default macro folder. This
default folder is also used if a macro without a fully qualified path is included on the command line
(e.g., "c:\Program Files\Crystal Point\OutsideView\Outside.exe™ /Mlogin.vch). Review the
Command Line Options section of the online System Administrator's Guide for more details on
available options. The default folder locations for OutsideView may be altered through the
Application Settings dialog (Edit:Application Settings).

Forms

Each macro has a single form. Additional dialogs may be created using the Begin Dialog...End
Dialog statements. Simple prompts or messages may be presented to the user via the InputBox or
MessageBox functions. The visible property of controls may be used to present portions of the user
interface in macros with complex forms. The procedures of a macro are private to that macro and
cannot be accessed by another macro.

Many of the tasks that may be automated by a Visual CommBasic macro require no user interface.
In this case, set the form's visible property to FALSE. When the macro starts, the form's Load event
will still fire and any code in the Load event procedure executes.

Variables

15

A variable that is declared (using Dim) external to any procedure body in the form Common area
has scope to all event procedures for that macro's objects.

Variables declared as Global have scope to all running macros. To prevent unexpected behavior, variables
should be declared as Global only when the intent is to share data with other macros.

Session Binding

A macro is bound to the session which is active (has focus) when the first command which interacts
with the session (e.g., CrtGet or Emit) is executed. A macro may only communicate with the
session to which it is bound. There is no means to switch the binding of a macro to another session.

Visual CommBasic Tutorial

Visual CommBasic is a powerful tool that allows you to easily build macro programs for OutsideView. This
tutorial describes some of the basic terminology and components of VCBasic, then leads you through
creating a simple macro. The time required for completing the tutorial is about one hour.

This is a hands-on example, so keep the VCBasic editor running throughout the tutorial. You will be given
the instructions needed to complete each step or task. You can end the tutorial at any time. If you need to
leave the tutorial but wish to continue, save your work to a macro file. You can then open the macro file later
and continue where you left off before.

While working through the tutorial, you can easily switch between this help window and the VCBasic Editor
by either clicking on the desired window or using the Alt+Tab keys.

You may want to look at some basic VCBasic Terminology if you're not familiar with it.

Let's move ahead and start creating your first macro!

Visual CommBasic and other Basics
How VCBasic Compares to Visual Basic and Word Basic
There are several versions of Basic with which you might be familiar, the most common being

Visual Basic and Word Basic. VCBasic shares a substantial common core of functions and
statements with these versions; however, each one has unique capabilities.

ﬁ
Nt

Differences Between VCBasic and Visual Basic

VCBasic is very similar to Microsoft's Visual Basic; however, there are some differences.
Functions and Statements Unique to VCBasic

VCBasic offers a few statements and functions not found in Visual Basic:

$CStrings $Include WaitTime
Assert GetField$ $NoCStrings
CrtAttr CrtCls SetField$

16

CrtCopy CrtEmit CrtCol

CrtRow CrtPosition CrtFieldSearch
CrtSetCursor CrtSearch CrtQuery$
Emit CrtTrigger$ CrtTypeSet$
FtSet$ EmitBrk FtQuery$
lolnput$ FtTrigger$ FtTypeSet$
loTrigger$ loQuery$ loSet$
Shutdown loTypeSet$ RunMacro
WaitDCD WaitCrtCursor WaitCrtUnlock
WaitStr WaitKeystrokes WaitSilent

Control-Based Objects

VCBasic does not predefine or include any Visual Basic object, such as a Button Control. As a
result, a VB property such as "BorderStyle" is not an intrinsic part of VCBasic. This does not mean
that as an integrator, you cannot define a VCBasic object that has BorderStyle as a property. You
will probably define many objects that are intrinsic to your application in the process of integration.

Dialog Box Capabilities and VBA

VB does not have a syntax to create or run dialog boxes. In contrast, VCBasic has a set of functions
and statements to enable the use of dialog boxes (they are similar to those in Word).

Microsoft offers a modified version of VB in some of its products, such as Excel. Called Visual
Basic for Applications (VBA), this version does provide dialog box handling statements and
functions.

Forms

Each macro has a single form. Additional dialogs may be created using the Begin Dialog...End
Dialog statements. Simple prompts or messages may be presented to the user via the InputBox or
MsgBox functions. The visible property of controls may be used to present portions of the user
interface in macros with complex forms. The Event and Common procedures for the form are
private to that macro and cannot be accessed by another macro.

Variables

With Visual CommBasic, a variable that is declared (using Dim) in the form Common area has scope to all
event procedures for that macro's objects. Variables cannot be shared between macros.

Differences Between VVCBasic and Word Basic

Word Basic is a precursor to Visual Basic that is included in Microsoft Word. Word Basic supports
dialog boxes, but it does not support objects.

Dialog Box Capabilities

The dialog box capabilities in VCBasic and Word are very similar. Word does offer some
statements and functions that VCBasic does not, such as DIgFilePreview. As well, VCBasic offers
some features that Word does not.

17

In response to the need for certain types of dialog box support, VCBasic offered some dialog box
options before Word Basic did. Later, Word Basic came out with their own syntax for these options.
As a result, there are minor differences in the way the two languages handle dialog boxes.

Button vs. PushButton

Button is the original VCBasic syntax; PushButton is the Word Basic syntax. The two are
interchangeable, and VVCBasic supports both.

PushButton is preferred, and is used throughout the Examples.
Dialog Box Units

The measurement units used in the two dialog box syntaxes are different. VCBasic supports both,
and you can choose to use either. Since many of our clients have built scripts based on the original
VCBasic units, those are the ones used in the Examples. As a result, if you use Word units, some of
the dialog boxes created in the Examples might look odd.

User Input Mechanisms
There are slight differences in some of the mechanisms for user input;
Visual CommBasic Word Basic

ComboBox (Word Basic

StaticComboBox or ComboBox supports only this syntax)

(in Visual CommBasic, these are
interchangeable)

DropComboBox N/A

How VCBasic Compares to Other Versions of Basic
See also: How VVCBasic Compares to Visual Basic and Word Basic

Differences Between Visual CommBASIC and Earlier Versions of Basic

If you are familiar with older versions of Basic (those that predate Windows), you will notice that
VCBasic includes many new features and changes from the language you have learned. VCBasic
more closely resembles other higher level languages popular today, such as C and Pascal.

The topics below describe some of the differences you will notice between the older Basics and
VCBasic.

Line Numbers and Labels

Older versions of Basic require numbers at the beginning of every line. More recent versions do not
support these line numbers; in fact, they will generate error messages.

If you want to reference a line of code, you can use a label. A label can be any combination of text and
numbers. Usually, it is a single word followed by a colon, which is placed at the beginning of a line of code.
These labels are used by the Goto statement.

Subroutines and Modularity of VC Basic

VCBasic is a modular language; code is divided into subroutines and functions. The subroutines and
functions you write use the VCBasic statements and functions to perform actions.

Variable Scope
The placement of variable declarations determines their scope:

Scope Definition

18

Local Dimensioned inside a subroutine or function. The variable is accessible
only to the subroutine or function that dimensioned it.

Module Dimensioned outside any subroutine or function. The variable is
accessible to any subroutine or function in the same file.

Global Dimensioned outside any subroutine or function using the Global statement. The
variable is accessible to any subroutine or function in any macro.

Data Types

Modern Basic is now a typed language. In addition to the standard data types -- numeric, string,
array, and record -- VCBasic includes variants and objects.

Variables that are defined as variants can store any type of data. For example, the same variable can
hold integers one time, and then, later in a procedure, it can hold strings.

Obijects give you the ability to manipulate complex data supplied by an application, such as
windows, forms or OLE2 objects.

Dialog Box Handling

VCBasic contains extensive dialog box support to give you great flexibility in creating and running your own
custom dialog boxes. You define a dialog box with dialog control statements between the Begin
Dialog...End Dialog statements, and then display it using the Dialog statement (or function).

VCBasic stores information about the selections the user makes in the dialog box. When the dialog
box is closed, your program can access this information.

VCBasic also includes statements and functions to display other types of boxes:

. message boxes notify the user of an event;
. password boxes do not echo the user's keystrokes on the screen; and
. input boxes prompt for a single line of input.

Financial Functions

VCBasic includes a list of financial functions, for calculating such things as loan payments, internal
rates of return, or future values based on a company's cash flows.

Date and Time Functions

The date and time functions have been expanded to make it easier to compare a file's date to today's
date, set the current date and time, time events, and perform scheduling-type functions (such as
finding the date for next Tuesday).

Object Handling

Windows includes OLE2 Object Handling, the ability to link and embed objects from one application into
another. An object is the end product of a software application, such as a document from a word processing
application. An offshoot of that ability is the Object data type that permits your VCBasic code to access
another software application through its objects and change those objects.

Environment Control

VCBasic includes the ability to call another software application (AppActivate), and send the application
keystrokes (SendKeys). Other environment control features include the ability to run an executable program
(Shell), temporarily suspend processing to allow the operating system to process messages (DoEvents), and
return values in the operating system environment table (Environ$).

19

Visual CommBasic Reference

Reference Topics

Conventions
Describes program and typographic conventions

Using the Examples
How to use the example provided with each function and statement

Comparing VCBasic to Other Versions of Basic
Describes differences between VVCBasic and earlier versions of Basic, Visual Basic, and Word Basic

Using VCBasic

Data Types Defines data types and their use

Dialog Boxes How to create and run a custom dialog box
Dynamic Data Exchange How to use DDE to talk with other applications
Error Handling How to trap errors

Expressions How to use operators to form string and numeric

expressions

Objects How to create and use objects

VC Basic Functions and Statements

Click on the appropriate functional group to jump to a complete list of its functions and statements

Array Handling Error Handling
Compiler Directives File Control
Control Flow and Assignment File Input/Output
Conversion Functions Financial Functions
Date Time Functions Numeric Functions
DDE Functions Object Handling
Declarations Screen Input/Output
Dialog Boxes SQL Functions
Disk and Directory Control String Functions
Emulation Manipulation Functions Trigonometric Functions
Environment Control Variant Handling

You can also click here to go to an alphabetical list of all statements, or click here to see a list of
statements grouped by function. Refer to the Emulation Manipulation Functions for functions
specific to communicating with a host and the operation of OutsideView.

20

General Help Topics

Expressions How to form expressions.

Type Conversion Converting between different data types.
Application Data Types Extended data types defined through API functions.
Dialog Functions List of functions and statements to be used when an

active dialog box is on the screen.

Conventions
See Also Help Typographic Conventions

VCBasic uses the following programming conventions:

Arguments

Arguments to subroutines and functions you write are listed after the subroutine or function and
might or might not be enclosed in parentheses. Whether you use parentheses depends on how you
want to pass the argument to the subroutine or function: either by value or by reference.

If an argument is passed by value, it means that the variable used for that argument retains its value
when the subroutine or function returns to the caller. If an argument is passed by reference, it means
that the variable's value might be (and probably will be) changed for the calling procedure. For
example, suppose you set the value of a variable, x, to 5 and pass x as an argument to a subroutine,
named mysub. If you pass x by value to mysub, the value of x will always be 5 after mysub returns.
If you pass x by reference to mysub, however, x could be 5 or any other value resulting from the
actions of mysub.

When an argument is passed by value to a procedure, the called procedure receives a copy of the
argument. If the called procedure modifies its corresponding formal parameter, it will have no affect
on the caller. Procedures written in other languages such as C may receive their arguments by value.

To pass an argument by value, use one of the following syntax options:

Call mysub((x))
mysub(x)
y=myfunction((x))
Call myfunction((x))

Procedures written in VCBasic are defined to receive their arguments by reference. If you call such
a procedure and pass it a variable, and if the procedure modifies its corresponding formal parameter,
it will modify the variable.

Passing an expression by reference is valid in VCBasic; if the called procedure modifies its
corresponding parameter, a temporary value will be modified with no apparent affect on the caller.

To pass an argument by reference, use one of the following options:

Call mysub(x)
mysub x
y=myfunction(x)
Call myfunction(x)

Arguments passed by reference to a procedure may be modified by the procedure.

21

Externally declared subroutines and functions (such as DLL functions) can be declared to take
byVal arguments in their declaration. In that case, those arguments are always passed byVal.

Named Arguments

When you call a subroutine or function that takes arguments, you usually supply values for those
arguments by listing them in the order shown in the syntax for the statement or function. For
example, suppose you define a function this way:

myfunction(id, action, value)

From the above syntax, you know that the function called myfunction requires three arguments: id, action,
and value. When you call this function, you supply those arguments in the order shown. If the function
contains just a few arguments, it is fairly easy to remember the order of each of the arguments. However, if a
function has several arguments, and you want to be sure the values you supply are assigned to the correct
arguments, use named arguments.

Named arguments are arguments identified by name rather than by position in the syntax. To use a named
argument, use the following syntax:

namedarg := value
Using this syntax for myfunction, you get:
myfunction id:=1, action:="get", value:=0

The advantage of named arguments, though, is that you do not need to remember the original order
as they were listed in the syntax, so the following function call is also correct:

myfunction action:="get", value:=0, id:=1
With named arguments, order is not important.

The other significant advantage to named arguments is when you call functions or subroutines that
have a mix of required and optional arguments. Ordinarily, you need to use commas as placeholders
in the syntax for the optional arguments that you do not use. With named arguments, however, you
can specify just the arguments you want to use and their values and forget about their order in the
syntax. For example, if myfunction is defined as:

myfunction(id, action, value, Optional counter)
you can use named arguments as follows:
myfunction id:="1", action:="get", value:="0"
or,
myfunction value:="0", counter:="10", action:="get", id:="1"
Note: Although you can shift the order of named arguments, you cannot omit required arguments.

All VCBasic functions and statements accept named arguments. The argument names are listed in
their syntax for the statement and function.

Arrays

Array dimensions are enclosed in parentheses after the array name:
arrayname(a,b,c)

Comments

Comments are preceded by an apostrophe and can appear on their own line in a procedure or directly
after a statement or function on the same line:

22

'this comment is on its own line

Dim i as Integer 'this comment is on the code line

Line Continuation

Long statements can be continued across more than one line by typing a space-underscore at the end
of a line and continuing the statement on the next line. (You can add a comment after the
underscore.)

Dim trMonth As Integer _ 'month of transaction
trYear As Integer 'year of transaction

Records
Elements in a record are identified using the following syntax:
record.element

where record is the previously defined record name and element is a member of that record.

Object Handling
See Also

Objects are the end products of a software application, such as a spreadsheet, graph, or document. Each
software application has its own set of properties and methods that change the characteristics of an object.
Obijects provide access to software functionality outside of VCBasic. Object variables are always Dimed as a
particular class. One such class, named Object, provides access to OLE2 automation.

Properties affect how an object behaves. For example, width is a property of a range of cells in a
spreadsheet, colors are a property of graphs, and margins are a property of word processing documents.

Methods cause the application to do something to an object. Examples are Calculate for a spreadsheet, Snap
to Grid for a graph, and AutoSave for a document.

In VCBasic, you have the ability to access an object and use the originating software application to
change properties and methods of that object. Before you can use an object in a procedure, however,
you must access the software application associated with the object by assigning it to an object
variable. Then you attach an object name (with or without properties and methods) to the variable to
manipulate the object. The syntax for doing this is shown in the following example code. Click on
the blue highlights for more details.

23

Sub main

— Dim visio as Object|
Dim doc as Ohbject
Dim page as Ohject
Create an object Dim i as Integer. doccount as Integear
variable to access [— Setwisio = GetObject("visio.application") |
the application If {visio |s Mothing) then
oetwvisio = CreateDbjeu:t["visiu.applicatiun"]l|

If (wisio ls Mothing) then
baghox "Couldn't find wvisiol

Exit Sub
End If
End if |
doccount = visio.documents. count
Fori=11to doccount
Use methods Setdoc = visio.documents(i)
and properties If doc.name = "myfileswsd" then
to act on objects Set page = doc.pages(l)
Exit Sub
End If
Mext |

oetdoc = visio.documents.open"myfile wsd")
Setpage = docpages(l)
End Sub

Note: The examples shown here are specific to the VISIO software application. Object, property and method
names vary from one application to another. You will need to refer to the software documentation for the
application you want to access for the applicable names to use.

Dynamic Data Exchange (DDE)
See Also

Dynamic data exchange (DDE) is a process by which two applications communicate and exchange data. One
application can be your Basic program. To "talk" to another application and send it data, you need to open a
connection, called a DDE channel, using the statement DDE Initiate. The application must already be
running before you can open a DDE channel. To start an application, use the Shell command.

DDElnitiate requires two arguments: the DDE application name and a topic name. The DDE application
name is usually the name of the .EXE file used to start the application, without the .EXE extension. For
example, the DDE name for Microsoft Word is "WINWORD". The topic name is usually a filename to get or
send data to, although there are some reserved DDE topic names, such as System. Refer to the application's
documentation to get a list of the available topic names.

After you have opened a channel to an application, you can get text and numbers (DDERequest), send text
and numbers (DDEPoke), or send commands (DDEExecute). When you have finished communicating with
the application, you should close the DDE channel using DDETerminate. Because you have a limited
number of channels available at once (depending on the operating system in use and the amount of memory
you have available), it is a good idea to close a channel as soon as you finish using it.

The other DDE command available in VCBasic is DDEAppReturnCode, which you use for error checking
purposes. After getting text, sending text, or executing a command, you might want to use

24

DDEAppReturnCode to make sure the application performed the task as expected. If an error did occur,
your program can notify the user of the error.

Alphabetical List

A
Abs Returns the absolute value of a number
AppActivate Activate another application

AppClassActivate

Activates an application window (dynamic title bar).

Asc Return an integer corresponding to a character code
Assert Trigger an error if a condition is false

Atn Return the arc tangent of a number

Beep Produce a short beeping tone through the speaker

Begin Dialog Begin a dialog box definition

Button Define a button dialog box control

ButtonGroup Begin definition of a group of button dialog box controls
Call Transfer control to a subprogram

CancelButton

Define a cancel-button dialog box control

Caption Define the title of a dialog box
CCur Convert a value to currency
CDbl Convert a value to double-precision floating point
ChDir Change the default directory for a drive
ChDrive Change the default drive
CheckBox Define a checkbox dialog box control
Chr Convert a character code to a string
Cint Convert a value to an integer by rounding
Class List List of available classes
Clipboard Access the Windows Clipboard
CLng Convert a value to a long by rounding
Close Close a file
ComboBox Define a combobox dialog box control
Command Return the command line specified when the MAIN sub was run
Const Declare a symbolic constant

25

Cos
CreateObject

CrtAttr
CrtCls
CrtCol
CrtCopy
CrtEmit
CrtFieldSearch
CrtGet$
CrtPosition
CrtQuery$
CrtRow
CrtSearch
CrtSetCursor
CrtTrigger$
CrtTypeSet$
CSng
CStr
$CStrings
CurDir
CVar
CVDate

D

Date Function

Date Statement

DateSerial

DateValue

Day

DDEAppReturnCode

DDEExecute

DDElnitiate

DDEPoke

DDERequest

DDETerminate

26

Return the cosine of an angle
Create an OLE2 automation object
Determine data field type at CRT position.
Clear the emulation screen.
Determine column position from CRT image cell value.
Copy CRT data to file, printer or clipboard.
Send data to emulation module.
Search for start or end of data field.
Read characters from the emulation screen.
Convert row,column position to cell value.
Query current emulation settings.
Determine row position from CRT image cell value.
Search for text on emulation screen.
Position the emulation cursor.
Send function keys under program control.
Query or set the emulation type.
Convert a value to single-precision floating point
Convert a value to a string
Treat backslash in string as an escape character as in 'C'
Return the current directory for a drive
Convert an number or string to a variant

Convert a value to a variant date

Return the current date

Set the current date

Return the date value for year, month, and day specified

Return the date value for string specified

Return the day of month component of a date-time value

Return a code from an application on a DDE channel

Send one or more commands to an application on a DDE channel
Open a dynamic data exchange (DDE) channel

Send data to an application on a DDE channel

Return data from an application on a DDE channel

Close a DDE channel

Declare

Deftype

Derived Functions
Dialog Function
Dialog Statement
Dim

Dir

DlgControlld
DlgEnable Function
DlgEnable Statement
DIgEnd

DlgFocus Function
DlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DlgSetPicture
DlgText Function
DlgText Statement
DlgValue Function
DlgValue Statement
DlgVisible Function
DlgVisible Statement
Do...Loop

DoEvents
DropComboBox
DropL.istBox

Emit
EmitBrk
Environ
Eof
Erase

Erl

Forward declare a procedure in the same module or in a dynamic link
library

Declare the default data type for variables

List of computed trigonometric and logarithmic functions

Display a dialog box and return the command button pressed
Display a dialog box

Declare variables

Return a filename that matches a pattern

Return numeric ID of a dialog control

Determine whether a dialog control is enabled or disabled
Enable or disable a dialog control

Closes the active dialog box

Return ID of the dialog control having input focus
Set focus to a dialog control

Return contents of a list box or combo box

Set contents of a list box or combo box

Change the picture in the Picture control

Return the text associated with a dialog control
Set the text associated with a dialog control
Return the value associated with a dialog control
Set the value associated with a dialog control
Determine whether a control is visible or hidden
Show or hide a dialog control

Control repetitive actions

Let operating system process messages

Define a drop combobox dialog box control

Define a drop list box dialog box control

Send "keyboard" data to the 1/0 module.

Simulate break signal or break key.

Return a string from the operating system's environment
Check for end of file

Reinitialize contents of an array

Return the line number where a run-time error occurred

27

Err Function Return a run-time error code

Err Statement Set the run-time error code
Error Function Return a string representing an error
Error Statement Generate an error condition
Exit Cause the current procedure or loop structure to return
Exp Return the value of e raised to a power
FileAttr Return information about an open file
FileCopy Copy afile
FileDateTime Return modification date and time of a specified file
FileLen Return the length of specified file in bytes
Fix Return the integer part of a number
For...Next Loop a fixed number of times
Format Convert a value to a string using a picture format
FreeFile Return the next unused file number
FtQuery$ Query current file transfer settings.
FtSet$ Specify new file transfer settings.
FtTrigger$ Invoke special actions for file transfer.
FtTypeSet$ Query or specify file transfer settings.
Function Define a function
FV Return the future value for a stream of periodic cash flows
Get Read bytes from a file
GetAttr Return attributes of specified file, directory of volume label
GetField Return a substring from a delimited source string
GetObject Return the name of an OLE2 object
Global Declare a global variable
Goto Send control to a line label
GroupBox Define a groupbox in a dialog box
Hex Return the hexadecimal representation of a number, as a string
Hour Return the hour of day component of a date-time value
If... Then ... Else Branch on a conditional value

28

$include
Input Function

Input Statement

Tell the compiler to include statements from another file

Return a string of characters from a file

Read data from a file or from the keyboard

InputBox Display a dialog box that prompts for input
InStr Return the position of one string within another
Int Return the integer part of a number
lolnput$ Receive data from the 1/0O module.
loQuery$ Query current 1/O settings.
loSet$ Specify new 1/O settings.
loTrigger$ Change 1/0 settings or request I/0 module action.
loTypeSet$ Query 1/0 settings, or prepare to change settings.
IPmt Return the interest portion of a loan or annuity payment
IRR Return the internal rate of return
Is Determine whether two object variables refer to the same object
IsDate Determine whether a value is a legal date
ISEmpty Determine whether a variant has been initialized
IsMissing Determine whether an optional parameter was supplied to a procedure
IsNull Determine whether a variant contains a NULL value
IsNumeric Determine whether a value is a legal number
K
Kill Delete files from a disk
L
LBound Return the lower bound of an array's dimension
LCase Convert a string to lower case
Left Return the left portion of a string
Len Return the length of a string or size of a variable
Let Assign a value to a variable
Like Operator Compare a string against a pattern
Line Input Read a line from a sequential file
ListBox Define a list box dialog box control
Loc Return current position of an open file
Lock Control access to some or all of an open file by other processes
Lof Return the length of an open file
Log Return the natural logarithm of a value

29

New

NPV

Picture

Lset
LTrim

Me

Mid Function
Mid Statement
Minute

MkDir

Month

MsgBox Function

MsgBox Statement

Name

$NoCStrings
Nothing

Now

Null

Object

Oct

OKButton
On...Goto

On Error

Open
OptionButton
OptionGroup
Option Base
Option Compare

Option Explicit

PasswordBox

30

Left-align one string or user-defined variable within another

Remove leading spaces from a string

Get the current object
Return a portion of a string
Replace a portion of a string with another string
Return the minute component of a date-time value
Make a directory on a disk
Return the month component of a date-time value
Display a Windows message box

Display a Windows message box

Rename a disk file

Allocate and initialize a new OLE2 object

Tell the compiler to treat a backslash as a normal character

Set an object variable not to refer to an object
Return the current date and time
Return the net present value of an investment

Return a null variant

Declare an OLE2 automation object
Return the octal representation of a number, as a string
Define an OK button dialog box control
Branch to one of several labels depending upon value
Control run-time error handling
Open a disk file or device for I/0
Define an OptionButton dialog box control
Begin definition of a group of OptionButton dialog box controls
Declare the default lower bound for array dimensions
Declare the default case sensitivity for string comparisons

Force all variables to be explicitly declared

Display a dialog box that prompts for input. Don't echo input.
Include a bitmap picture (.BMP file) in a dialog box

Pmt
PPmt

PV

Rate

Print
PushButton
Put

Randomize

ReDim
Rem
Reset
Resume
Right
RmDir
Rnd
Rset
RTrim

RunMacro

Second

Seek Function
Seek Statement
Select Case
SendKeys

Set

SetAttr
SetField

Sgn

Shell
Shutdown

Sin

Space

Spc

Return the periodic payment for a loan or annuity

Return the principal paid on a loan or annuity
Print data to a file or to the screen

Define a push button dialog box control

Write data to an open file

Return the present value for a stream of cash flows

Initialize the random-number generator
Return the interest rate for a loan or annuity
Declare dynamic arrays and reallocate memory
Treat the remainder of the line as a comment
Close all open disk files
End an error-handling routine
Return the right portion of a string
Remove a directory from a disk
Return a random number
Right-align one string within another

Remove trailing spaces from a string

Run another macro program from within current macro.

Return the second component of a date-time value
Return the current position for a file
Set the current position for a file
Execute one of a series of statement blocks
Send keystrokes to another application
Set an object variable to a value
Set attribute information for a file
Replace a substring within a delimited target string
Return a value indicating the sign of a number
Run an executable program
Shutdown (terminate) OutsideView.
Return the sine of an angle
Return a string of spaces

Output given number of spaces

31

SQLClose Close a data source connection

SQLError Return a detailed error message ODBC functions

SQLExecQuery Execute an SQL statement

SQLGetSchema Obtain information about data sources, databases, terminology,
users, owners, tables, and columns

SQLOpen Establish a connection to a data source for use by other functions

SQLRequest Make a connection to a data source, execute an SQL statement,

SQLRetrieve

SQLRetrieveToFile

Sgr
Static
StaticComboBox
Stop
Str
StrComp
String
Sub

Tab

Tan

Text

TextBox

Time Function

Time Statement

Timer

TimeSerial

TimeValue
Trappable Errors

Trim

Type

Typeof

32

return the results

Return the results of a select that was executed by
SQLExecQuery into a user-provided array

Return the results of a select that was executed by
SQLExecQuery into a user-specified file

Return the square root of a number

Define a static variable or subprogram

Define a combination of a list box and text box in a dialog box

Stop program execution
Return the string representation of a number
Compare two strings

Return a string consisting of a repeated character

Define a subprogram

Move print position to the given column
Return the tangent of an angle
Define a line of text in a dialog box
Define a text box in a dialog box
Return the current time
Return the current time
Return the number of seconds since midnight
Return the time value for hour, minute, and second specified
Return the time value for string specified
A list of errors trapped by VCBasic code
Remove leading and trailing spaces from a string
Declare a user-defined data type

Check the class of an object

WaitStr

With

UBound
UCase
Unlock

Val
VarType

WaitCrtCursor
WaitCrtUnlock
WaitDCD
WaitKeystrokes
WaitSilent

WaitTime
Weekday
While ... Wend
Width

Write

Year

Events

You can define the behavior of VCBasic graphical controls for the following events:

Activate
Change
Click
Common
DblClick
Deactivate
DragDrop
DragOver

Return the upper bound of an array's dimension

EditChange
GotFocus
KeyDown
KeyPress
KeyUp
Load

LostFocus

Convert a string to upper case

Control access to some or all of an open file by other processes

Convert a string to a number

Return the type of data stored in a variant

Wait for cursor to appear at specific position.

Wait for keyboard to unlock.

Wait for carrier detect.

Wait for specified number of keystrokes.

Wait for inactivity (1/0 idle).

Wait for strings in the emulation data stream

Wait for a specific time period.

Return the day of the week for the specified date-time value
Control repetitive actions

Set output-line width for an open file

Execute statements on an object or a user-defined type

Write data to a sequential file

Return the year component of a date-time value

MouseMove
MouseUp
Resize
RightClick
Scroll
Timer

Unload

33

Methods

You can use the following VCBasic methods to define the behavior of VCBasic graphical controls:

Addltem
CanUndo
Clear
DeleteString
Directory
Drag

EmptyUndoBuffe
r

FindString
FindStringExact
FormatLines
GetData

GetFormat

GetLineFromChar

Properties

GetLineText
GetSel
GetSelCount
GetText
InsertString
Load

LoadCursor

LoadPicture
Move

Refresh
ReplaceSelection

ScrollText

SelectString
SelltemRange
SetCaretIndex
SetData
SetFocus
SetReadOnly
SetSel

SetSelection
SetText
Undo
UnloadForm

ZOrder

You can use the following VVCBasic properties to define the appearance and behavior of VCBasic graphical

controls

Alignment
AutoSize
BackColor

BorderStyl
e

Cancel

Caption

Columns

ColWidth

CurSel

34

Fontltalic Left
FontName Max
FontSize MaxButto
n
FontStrike MaxLengt
Thru h
FontUnder Min
line
ForeColor MinButton
FormHeig MultiLine
ht
FormWidt MultiSelec
h t
HasCaptio Name

Style
SysMenu
TabIndex

TabStop

Tag

Text
Tiled

Timer

Top

n

Cursor Height PasswordC ToplIndex
har
Default HelpFileN Picture Value
ame
DragCurso HelpID PictureCro Visible
r p
DragMode HideSelect PictureJust Width
ion ify
Enable Hwnd ScrollBars WindowsSt
ate
ExpandTa Icon SmallChan WordWrap
bs ge
FontBold LargeChan Sorted
ge

Data Types and Expressions
Application Data Types (ADTS)

Application Data Types are specific to each application that embeds VCBasic. ADT variables have the
appearance of standard VCBasic records. The main difference is that they can be dynamic; creating,
modifying, or querying the ADT or its elements will cause application-specific actions to occur. ADT
variables and arrays are declared just like any other variable, using the Dim or Global statement.

Data Type Conversions

Visual CommBasic will automatically convert data between any two numeric types. When converting

from a larger type to a smaller type (for example Long to Integer), a runtime numeric overflow might occur.
This indicates that the number of the larger type is too large for the target data type. Loss of precision is not a
runtime error (e.g., when converting from Double to Single, or from either float type to either integer type).

Visual CommBasic will also automatically convert between fixed strings and dynamic strings. When
converting a fixed string to dynamic, a dynamic string that has the same length and contents as the fixed
string will be created. When converting from a dynamic string to a fixed string, some adjustment might be
required. If the dynamic string is shorter than the fixed string, the resulting fixed string will be extended with
spaces. If the dynamic string is longer than the fixed string, the resulting fixed string will be a truncated
version of the dynamic string. No runtime errors are caused by string conversions.

Basic will automatically convert between any data type and variants. Basic will convert variant strings to
numbers when required. A type mismatch error will occur if the variant string does not contain a valid
representation of the required number.

No other implicit conversions are supported. In particular, Basic will not automatically convert between
numeric and string data. Use the functions Val and Str$ for such conversions.

35

Dynamic Arrays

Dynamic arrays differ from fixed arrays in that you do not specify a subscript range for the array elements
when you dimension the array. Instead, the subscript range is set using the Redim statement. With dynamic
arrays, you can set the size of the array elements based on other conditions in your procedure. For example,
you might want to use an array to store a set of values entered by the user, but you do not know in advance
how many values the user has. In this case, you dimension the array without specifying a subscript range and
then execute a ReDim statement each time the user enters a new value. Or, you might want to prompt for the
number of values a user has and execute one ReDim statement to set the size of the array before prompting
for the values.

If you use ReDim to change the size of an array and want to preserve the contents of the array at the
same time, be sure to include the Preserve argument to the ReDim statement.

If you Dim a dynamic array before using it, the maximum number of dimensions it can have is 8. To create
dynamic arrays with more dimensions (up to 60), do not Dim the array at all; instead use just the ReDim
statement inside your procedure.

The following procedure uses a dynamic array, varray, to hold cash flow values entered by the user:

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim msgtext
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods")
ReDim varray(cflowper)
For x=1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #" & x & ":")
Next x
aprate=InputBox("Enter discount rate: ")
If aprate>1 then
aprate=aprate/100
End If
netpv=NPV (aprate,varray())
msgtext="The net present value is: "
msgtext=msgtext & Format(netpv, "Currency")
MsgBox msgtext
End Sub

Expressions

An expression is a collection of two or more terms that perform a mathematical or logical operation. The
terms are usually either variables or functions that are combined with an operator to evaluate to a string or
numeric result. You use expressions to perform calculations, manipulate variables, or concatenate strings.

Expressions are evaluated according to precedence order. Operators with higher precedence are evaluated
before operators with lower precedence. Operators with equal precedence are evaluated from left to right.
Parentheses can be used to override the default precedence; operators within parentheses will be evaluated
before those outside the parentheses.

The precedence order (from high to low) for the operators is:
Numeric Operators

String Operators

36

Comparison Operators

Logical Operators

The following table lists the operators in precedence order from high to low.

Mod

Not

And

Xor

Eqv

Imp

Variant Data Type

Operator

Description

A
-+

* |
\

Or

0

Exponentiation.

Unary minus and plus.

Numeric multiplication or division. For division, the result is a Double.
Integer division. The operands can be Integer or Long.

Modulus or Remainder. The operands can be Integer or Long.

Numeric addition and subtraction. The + operator can also be used for string
concatenation.

String concatenation.

Numeric or String comparison. For numbers, the operands will be widened to
the least common type (Integer is preferred over Long, which is preferred over
Single, which is preferred over Double). For Strings, the comparison is
case-sensitive, and based on the collating sequence used by the language
specified by the user using the Windows Control Panel. The result is O for
FALSE and -1 for TRUE.

Unary Not. Operand can be Integer or Long. The operation is performed
bitwise (one's complement).

And operands can be Integer or Long. The operation is performed bitwise.

Inclusive Or. Operands can be Integer or Long. The operation is performed
bitwise.

Exclusive Or. Operands can be Integer or Long. The operation is performed
bitwise.

Equivalence. Operands can be Integer or Long. The operation is performed
bitwise. (A Eqgv B) is the same as (Not (A Xor B)).

Implication. Operands can be Integer or Long. The operation is performed
bitwise. (A Imp B) is the same as ((Not A) OR B).

Record member. The left operand must be a record variable, and the right
operand must be the name of a field.

Array element.

The variant data type can be used to define variables that contain any type of data. A tag is stored with the
variant data to identify the type of data that it currently contains. You can examine the tag by using the
VarType function.

A variant can contain a value of any of the following types:

Type/Name

Size of Data Range

37

0 (Empty) 0 N/A

1 0 N/A
Null
2 2 bytes -32768 to 32767
Integ (short)
er
3 4 bytes -2.147E9 to 2.147E9
Long (long)
4 4 bytes -3.402E38 to
Singl (float) -1.401E-45 (negative)
e
1.401E-45 to 3.402E38
(positive)
5 8 bytes -1.797E308 to
Doub (double) -4.94E-324 (negative)
le
4.94E-324 t0
1.797E308 (positive)
6 8 bytes -9.223E14 t0 9.223E14
Curre (fixed)
ncy
7 8 bytes Jan 1st, 100 to Dec 31st,
Date (double) 9999
8 0to 0 to ~64k characters
Strin ~64kbytes
g
9 N/A N/A
Obje
ct

Any newly-defined Variant defaults to being of Empty type, to signify that it contains no initialized data. An
Empty Variant converts to zero when used in a numeric expression, or an empty string in a string expression.
You can test whether a variant is uninitialized (empty) with the IsEmpty function.

Null variants have no associated data and serve only to represent invalid or ambiguous results. You can test
whether a variant contains a null value with the IsNull function. Null is not the same as Empty, which
indicates that a variant has not yet been initialized.

Formatting Data for Display
Formatting Numbers
See Also

When you use the Format$ function, numeric values may be formatted as either numbers or date/times. If a
numeric expression is supplied and the fmt argument is omitted or null, the number will be converted to a
string without any special formatting.

38

Format

Description

Curr
ency

Fixe

Gen
eral
Num
ber

on/
Off

Perc
ent

Scie

ntifi

Stan
dard

True
[Fals

Yes/
No

Display the number using a currency symbol as defined in the International
section of the Control Panel. Use the thousands separator and display two digits to
the right of the decimal separator. Enclose negative value in parentheses.

For example: Format$(1234,"Currency") returns "$1,234.00".

Display the number with at least one digit to the left and at least two digits to the
right of the decimal separator.

Display the number without thousands separator.

Display Off for zero, On for any other number.

Multiply the number by 100 and display with a percent sign appended to the right;
display two digits to the right of the decimal separator.

Display the number using standard scientific notation.

Display the number with the thousands separator and two digits to the right of the
decimal separator.

Display False for zero, True for any other number.

Display No for zero, Yes for any other number.

Formatting Date/Times

See Also

When you use the Format$ function, both numeric values and variants may be formatted as dates. When
formatting numeric values as dates, the value is interpreted according the standard VVCBasic date-encoding
scheme. The base date, December 30, 1899, is represented as zero, and other dates are represented as the
number of days from the base date.

Format

Description

General Date

If the number has both integer and real parts, display both date and time.

39

Long Date

Medium Date

Short Date

Long Time

Medium
Time

Short Time

Example: 11/8/93 1:23:45 PM
If the number has only integer parts, display it as a date. If the number has only
fractional parts, display it as time.

Display a Long Date. Long Date is defined in the International section of the
Control Panel.

Display the date using the month abbreviation and without the day of the week.
Example: 08-Nov-93

Display a Short Date. Short Date is defined in the International section of the
Control Panel.

Display Long Time. Long Time is defined in the International section of the
Control Panel and includes hours, minutes, and seconds.

Do not display seconds; display hours in 12-hour format and use the AM/PM
designator.

Do not display seconds; use 24-hour format and no AM/PM designator.

When using a user-defined format for a date, the fmt specification contains a series of tokens. Each token is
replaced in the output string by its appropriate value.

A complete date may be output using the following tokens:

Token Output

c The date time as if the fmt was: "ddddd ttttt". See the definitions below.

dddd The date including the day, month, and year according to the machine's current
d Short Date setting. The default Short Date setting for the United States is m/d/yy.
dddd The date including the day, month, and year according to the machine's current
dd Long Date setting. The default Long Date setting for the United States is mmmm

dd, yyyy.
ttttt The time including the hour, minute, and second using the machine's current time

settings. The default time format is h:mm:ss AM/PM.

Finer control over the output is available by including fmt tokens that deal with the individual components of

the date/time:

Token Output
d The day of the month as a one- or two-digit number (1-31).
dd The day of the month as a two-digit number (01-31).
ddd The day of the week as a three-letter abbreviation (Sun-Sat).
ddd The day of the week without abbreviation (Sunday-Saturday).

40

mm

mm

mm

§‘<

nn

SS

The day of the week as a number (Sunday as 1, Saturday as 7).

The week of the year as a number (1-53).

The month of the year or the minute of the hour as a one- or two-digit number. The
minute will be output if the preceding token was an hour, otherwise the month will
be output.

The month of the year or the minute of the hour as a two-digit number. The minute
will be output if the preceding token was an hour, otherwise the month will be
output.

The month of the year as a three-letter abbreviation (Jan-Dec).

The month of the year without abbreviation (January-December).

The quarter of the year as a number (1-4).

The day of the year as a number (1-366).
The year as a two-digit number (00-99).

The year as a four-digit number (1900-9999).

The hour as a one- or two-digit number (0-23).

The hour as a two-digit number (00-23).

The minute as a one- or two-digit number (0-59).

The minute as a two-digit number (00-59).

The second as a one- or two-digit number (0-59).

The second as a two-digit number (00-59).

By default, times will be displayed using a military (24-hour) clock. Several tokens are provided in date/time
fmt specifications to change this default, which causes a 12-hour clock to be used. These are:

Token

Output

AM/
PM

am/p

An uppercase AM with any hour before noon; an uppercase PM with any hour
between noon and 11:59 PM.

A lowercase am with any hour before noon; a lowercase pm with any hour

41

A/P

alp

AM
PM

between noon and 11:59 PM

An uppercase A with any hour before noon; an uppercase P with any hour
between noon and 11:59 PM.

A lowercase a with any hour before noon; a lowercase p with any hour between
noon and 11:59 PM.

The contents of the 1159 string (s1159) in the WINL.INI file with any hour before
noon; the contents of the 2359 string (s2359) with any hour between noon and
11:59 PM.

Note: ampm is equivalent to AMPM.

Note that any set of characters may be inserted into the output by enclosing them in double quotes.
Any single character may be inserted by preceding it with a backslash, "\". See Inserting Characters
into the Output String for more details.

Formatting Numbers in Scientific Notation

See Also

When you use the Format$ function, numbers may be formatted in scientific notation by including one of the
following exponent strings in the fmt specification: E-, E+, e-, e+.

Uppercase E appears in the output.
Lowercase e appears in the output.
Only negative exponents in the output are preceded by the appropriate sign.

All exponents in the output are preceded by the appropriate sign.

The exponent string should be preceded by one or more digit characters. The number of digit
characters following the exponent string determines the number of exponent digits in the output.

Examples:

Number Fmt Result
123 Hit # 123.4
456 #E-00 6E04
7.89
123 Hith # 123.4
456 He+# 6e+4
7.89
0.12 0.00E 1.23E
345 -00 -01

Formatting Strings

See Also

42

When you use the Format$ function, strings are formatted by examining the fmt specification and
transferring one character at a time from the input expression to the output string.

By default, formatting will transfer characters working from left to right. The exclamation point (!) format
character may be used to change this default. Its presence in the fmt specification will cause characters to be
transferred from right to left.

By default, characters being transferred will not be modified. The less than sign (<) and the greater
than sign (>) characters may be used to force case conversion on the transferred characters. Less
than (<) forces output characters to be in lowercase. Greater than (>) forces output characters to be
in uppercase.

Character transfer is controlled by the at sign (@) and ampersand (&) characters in the fmt specification.
These operate as follows:

Character Interpretation

@ Output a character or a space. If there is a character in the string being
formatted in the position where the @ appears in the format string,
display it; otherwise, display a space in that position.

& Output a character or nothing. If there is a character in the string being
formatted in the position where the & appears, display it; otherwise,
display nothing.

A fmt specification for strings can have one or two sections, with the sections separated by a semicolon.
One section Format specification applies to all string data.

Two sections The first section applies to string data.
The second section applies to null values and zero-length strings.

Controls and Dialogs

Visual CommBasic Control Reference

Visual CommBasic comes with a set of standard Windows controls that you can use in your applications.
Each control has a set of properties, events, and methods that applies to it. For information on a control, select
it from the list below.

[Check Box
o—

Clipboard

43

Combo Box

Edit Control

Form

= 15 [l

Group Box

iliE

Label

List Box

Option Button

Picture Box

Push Button

Scroll Bars

=l PRI I T Rl]

Creating and Modifying Controls

Creating a control
When working with controls, you use the mouse to create, size, and move, and to align controls on a form.

You can also change the properties of a control using the Property Sheet (in design mode) and
scripts (in run mode).

To create a control:
1. Select the form on which you want to create the control.

2. Click the appropriate control on the Control Palette. The mouse pointer changes to
crosshairs, indicating you are in drawing mode.

3. Use the crosshairs to draw a rectangle that defines the shape of the control on the form. To
do this, position the crosshairs and click to create one corner of the rectangle, then drag the mouse to
size the control's rectangle, and release the mouse button.

4. The control appears in the rectangle you drew, and the mouse returns to selection mode.

Modifying a control
You can size and move a control in several ways:

. Drag it to a new location with the mouse. A grid is available to help you in the alignment of controls
(such as buttons).

. Drag its handles with the mouse to change its size.

44

. Use alignment tools on the Toolbar or the Edit menu to change the positions or sizes of several
controls relative to each other.

. Change its properties on the Property Sheet.

Use the Script Editor to write a script that changes the properties of a control when an event occurs.

Control Palette

The Control Palette is a set of tools you use when you are designing forms. Each tool, except the
mouse-pointer tool, puts the mouse in drawing mode, so you can draw one Visual CommBasic control of the
type represented by the tool. Use the mouse-pointer tool to return to selection mode when you are in drawing
mode.

The tools on the Control palette are:

Sel?\(/:lgcc)iz Push Button
Check Box
Option Horizontal Scroll Bar
Button List Box
Vertical Scroll Bar Y Edit Box
Group Box Picture
Combo Box
Label
Form

To use the control palette to create a control on the active form:

1. Click the appropriate control. The mouse pointer changes to crosshairs, indicating you are
in drawing mode.

2. Use the crosshairs to draw a rectangle that defines the shape of the control on the form. To
do this, position the crosshairs and click to create one corner of the rectangle, then drag the mouse to
size the control's rectangle, and release the mouse button.

3. The control appears in the rectangle you drew, and the mouse returns to selection mode.

Dialog Boxes
See Also
To create and run a dialog box, follow these three steps:

1. Define a dialog box record using the Begin Dialog...End Dialog statements and the dialog box definition
statements such as TextBox, OKButton.

2. Create a function to handle dialog box interactions using the Dialog Functions and Statements.
(Optional)

45

3. Display the dialog box using either the Dialog Function or Dialog Statement.

The example code skeleton below illustrates these steps. Click your mouse over the blue hotspots in
this graphic to find out more details.

Declare Function myfunclidentifierf.action. suppvalue)
Sub Main
Begin Dialog MEWDLG dimx. dimy. caption. myfunc
ListBox.....
ComboBaox......
QKButton....

Define the dialog CancelButton....
b End Dialog

Dim dlg as NEWDLG
Dim response as Integer

respunse=DiaIug[dlgj| Step | 3 |

If response=-1 then Display the dialog box
'clicked Ok buttan

Elzelf repanze= 0 then
'clicked Cancel buttan

Elzelf respanse> 0 then
'clicked another command buttan

End If
End Sub
_ Function myfunclidentifierf.action. suppvalue)
Write & function '_.code to handle dialog box actions

to handle dialod | End Function
biox interaction

Dialog Functions and Statements

The function you create uses the "DIg" dialog functions and statements to manipulate the active dialog box.
This is the only function that can use these functions and statements.

Dialog functions and statements can be used only when there is an active dialog on the screen; in other words,
only the function that was associated with the active dialog in the BeginDialog statement (or the VCBasic
procedure it called) may call these functions.

This is the list of dialog functions and statements:

Dialog Function Display a dialog box and return the button pressed
Dialog Statement Display a dialog box

DlgControlld Return numeric ID of a dialog control.

DlgEnable Function Tell whether a control is enabled or disabled.
DlgEnable Statement Enable or disable a dialog control.

DIgEnd Close the active dialog box

DlgFocus Function Return ID of the dialog control having input focus
.DlgFocus Statement Set focus to a dialog control.

46

DlgListBoxArray Return contents of a list box or combo box.
Function

DlgListBoxArray Set contents of a list box or combo box.
Statement

DlgSetPicture Change the picture in the Picture control
DlgText Function Return the text associated with a dialog control.
DIgText Statement Set the text associated with a dialog control.
DlgValue Function Return the value associated with dialog control.
DlgValue Statement Set the value associated with a dialog control.
DlgVisible Function Tell whether a control is visible or hidden.
DlgVisible Statement Show or hide a dialog control.

Most of these functions and statements take the control ID as their first argument. For example, if a check box
was defined with the following statement:

CheckBox 20, 30, 50, 15, "My check box", .Checkl

Then the DIgEnable "Check1", 1 statement enables the check box, and the DIgValue(*Check1") function
returns 1 if the check box is currently checked, 0 if not. Note that the IDs are case-sensitive and do not include
the dot, which appears before the ID. Dialog functions and statements can also work with numeric IDs.
Numeric 1Ds depend on the order in which dialog controls are defined.

For example, if the check box that we considered was the first control defined in the dialog record, the
DlgValue(0) would be equivalent to DIgValue("Check1"). (The control numbering begins from 0, and the
Caption control does not count.)

Note that for some controls (such as buttons and texts) the last argument in the control definition,
ID, is optional. If it is not specified, the text of the control becomes its ID.

For example, the Cancel button can be referred as "Cancel™ if its ID was not specified in the
CancelButton statement.

Property Sheet

The VCBasic Property Sheet shows the name of the currently selected control on the active form, lists the
properties that are available for that control, and shows their current settings. When in Design mode, you can
use the Property Sheet to change the property settings of a control.

47

I[fulm1] - WForm j
BackCalar b:H S000000F % e
BorderStyle 2 - Sizeable
Caption
Curgor [Drefault)

CrragCursor [Drefault)

Dragkdode 0 - kanual

Enable 1-Tre

FormHeight 102

Formiaidth 272

HazCaption 1-Tre

Height 129

HelpFileM ame

HelplD 0

|zon [hione] —
Left 203

i axButton 1-Tre

Menutisible 1-Tre

MinE utton 1-Tre

M ame form1

Picture [hone b

Note: You can change some of the positional property settings of a control when in Design mode by using its
sizing handles, moving it with the mouse, or aligning it with the alignment tools. Use the Script Editor to
change the properties of a control during run time.

To change a control's properties by using the Property Sheet:

1. If the Property Sheet is not open, click the control to select it, then click the Property Sheet tool on
the Toolbar, or use the menu and select View:Property Sheet.

If the Property Sheet is already open, select the control from the drop-down list box at the top of the Property
Sheet window.

2. On the Property Sheet, highlight the property you want to change. A button on the far right side of
the highlighted row appears and indicates how you set the property:

Q To set one of these properties, click on this button to open a dialog in
which you can select the property value. If the property setting is a
file, the dialog is a file browser. In other cases, the dialog shows your
options or some subset of them (such as a color palette for the
BackColor property).

48

Or, type appropriate text in the edit portion of the row, then
click outside the row to establish the new setting. If your
entry is invalid, an error message appears.

To set these properties, click on this button to display a drop-down
list of your choices. To select the one you want, click it. Or, remove
the drop-down list by clicking outside it.

To set one of these properties, type appropriate text in the edit
' portion of the row. Then click the checkmark, or move to another
field, or press the Enter key to establish the new setting. If your entry
is invalid, an error message appears.

Error Trapping and Handling

Error Handling
See Also

VCBasic contains three error handling statements and functions for trapping errors in your program: Err,
Error, and On Error. VCBasic returns a code for many of the possible runtime errors you might encounter.
See Trappable Errors for a complete list of codes.

In addition to the errors trapped by VCBasic, you might want to create your own set of codes for
trapping errors specific to your program. You would do this if, for example, your program
establishes rules for file input and the user does not follow the rules. You can trigger an error and
respond appropriately using the same statements and functions you would use for VCBasic-returned
error codes.

Regardless of the error trapped, you have one of two methods to handle errors; one is to put
error-handling code directly before a line of code where an error might occur (such as after a File
Open statement), and the other is to label a separate section of the procedure just for error handling,
and force a jump to that label if any error occurs. The On Error statement handles both options.

For more information, refer to one of the topics below:
Trapping Errors Returned by VCBasic
Trapping User-defined (Non-VCBasic) Errors

Assert Trigger an error if a condition is false
Erl Return the line number where a run-time error occurred
Err Function Return a run-time error code

Err Statement Set the run-time error code
Error Generate an error condition
Error Function Return a string representing an error

On ErrorControl run-time error handling

49

Resume End an error-handling routine

Trappable Errors Errors that can be trapped by VCBasic code

Encountering Run-Time Errors

Once a script has been compiled and is running, errors may still occur. Overstepping array bounds, bad file
handles, or other such inadvertent or unexpected errors can halt or adversely affect execution. These are
called run-time errors.

Run-time errors can be caught through the scripting language with the use of ON-ERROR-GOTO
statements, allowing you to define appropriate error handling instructions. You can determine the cause of an
error and decide if and how script execution should continue.

Errors that are not caught cause script execution to stop and cause the form to be placed in Designh mode.
When this happens, the Script Editor window opens, indicating the error line with a red "run" icon, as shown
in the following example:

Al Script Editer =] 3

Object: | huttond *j Event: | Click ‘*j
] Sub Click [) |
Dim atternpts(b) As Integer =

£ |attempts(10) = 0

usd d Subscript out of range
pa)

lf Lenfuserd$) < & then
errormsgll)
End If

[f Len{password$) < 8 then
Brrormsg)

il B

Marker for
run-tirme error

) L

Errar detail box

Trappable Errors

The following table lists the run-time errors that VCBasic returns. These errors can be trapped by On Error.
The Err function can be used to query the error code, and the Error$ function can be used to query the error
text.

Error Code Error Text

5 Illegal function call

50

10
11
13
14
19
20
28
35
48
52
53
54
55
58
61
62
63
64
68
70
71
74
75
76
91
93
94
102
429
438
439

Overflow

Out of memory

Subscript out of range
Duplicate definition
Division by zero

Type mismatch

Out of string space

No resume

Resume without error

Out of stack space

Sub or function not defined
Error in loading DLL

Bad file name or number
File not found

Bad file mode

File already open

File already exists

Disk full

Input past end of file

Bad record number

Bad file name

Device unavailable
Permission denied

Disk not ready

Can't rename with different drive
Path/File access error

Path not found

Object variable set to Nothing
Invalid pattern

Illegal use of NULL
Command failed

Object creation failed

No such property or method

Argument type mismatch

51

440 Obiject error

901 Input buffer would be larger than 64K
902 Operating system error

903 External procedure not found

904 Global variable type mismatch

905 User-defined type mismatch

906 External procedure interface mismatch
907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

Trapping Errors Returned by VCBasic

This code example shows the two ways to trap errors. Option 1 places error-handling code directly
before the line of code that could cause an error. Option 2 contains a labeled section of code that
handles any error. Click on the blue highlights to get more details.

Sub main

Dirn userdrive, userdir. msogtest
userdrive=InputBox"Enter drive:",."C:")

Place error-

handling code
within the body
of a procedure

in2: userdir=InputBox("Enter directar:")
ChDir ugserdrive & "" & userdir

_
Pzghox "Mew default directony is: " & userdrive & "' & userdir
Flace errar- Eit Sub

handing code
atthe end of
a procedure
and Gota itwvia
a lahel

End Sub

52

Trapping User-Defined (Non-VCBasic) Errors

These code examples show the two ways to set and trap user-defined errors. Both options use the Error
statement to set the user-defined error to the value 30000. To trap the error, option 1 places error-handling
code directly before the line of code that could cause an error. Option 2 contains a labeled section of code that
handles any user-defined errors.

Sub bain
Diim custname as String

in1: Err=0
custname=InputBox

Flace error-

handling code
within the body
of a procedure

"Enter customer name:"

Maghox "The name is: " & custhame

End Sub
=ub kain
Dirm custname as Strini

in1: Err=0
Flace error- custnames=InputBox$"Enter customer name:")
handing code If custname="" then
atthe end of
a procedure End If
and Goto itwia tMeghox "The nameis: " & custhame
alahel Exit Sub

End Sub

53

Visual CommBasic Editor

Menus and Toolbars

Menus and Toolbars
Top level menus

Use the menu commands (or the corresponding tools on the Toolbar) to create an application
interface, add controls and specify their properties, write scripts for the controls, test the interface,

and debug it.
The menus are:
F E Vi R D W H
i dit e un eb in el
| w ug do p
e w

Toolbar

The tools on the Toolbar are a convenient way to select commonly-used menu commands. The tools are:

File Functions

New

Open
Edit Functions

Cut

Copy

Run Functions

Start Run Mode

End Run Mode

|

Debug Functions

Start Debug Mode

End Debug Mode

Single Step

Show Variables

S E NS

View Functions

Property Sheet

H

al

4

Script Editor
Alignment
Functions
|= Align Left
2 Align Right
T Align Top
Align Bottom

Align Horizontally

i

Align Vertically

kad
=

Stack Vertical

Stack Horizontal

Same Width

Same Height

Same Size

2 = @) 2

Debug Menu
Use these commands, or their corresponding Toolbar buttons, to help you debug your scripts.

Toolbar Menu commands

Start

End
Resume
E Single Step

Show Variables

]

Clear Breakpoints

Edit Menu

Use the commands on the Edit menu or the corresponding Toolbar buttons to help you modify the form and
its controls:

Toolbar Menu command

Undo
Redo

Cut

Copy

Paste

Paste Special...
Delete

Find

Replace

Bring to Front
Send to Back

Alignment Menu

Edit:Alignment Menu

Select two or more controls and use these commands to change their positions relative to each other. These
alignment commands can be quickly performed with the Toolbar.

Toolbar Menu command
|z Align Left
2 Align Right

56

Align Top

Tt

il Align Bottom
[Horizontal Space
T3 Vertical Space

Stack Vertical

Stack Horizontal

Same Height
Same Width
Same Size

[&]

File Menu

Use the commands on this menu to manage your Visual CommBasic files and choose which control files you
want as part of the VCBasic environment. New, Open, and Save can be quickly performed with the Toolbar.

Toolbar Menu command

New
Open

Close

Save

57

Save As...
Save as Text...
Import

Print Form
Recent file list

Exit

Help Menu

Use these commands to display help information about VVCBasic.
Index
Using Help

About Visual CommBasic

Run Menu
Use the commands on this menu to switch between Run mode and Design mode.

These functions can be quickly performed with the Toolbar.

Toolbar Menu command

@ Start

@ End

View Menu
Use the commands on this menu to hide or show any of the following.

A checkmark appears beside an item when it is enabled (visible).

Toolbar Menu command

Script Editor

58

Properties

Grid Settings...
Toolbox
Toolbar

Status bar
Always On Top

Window Menu
Use these commands to control the display of the forms and icons in the working window.

Cascade

Tile

Arrange Icons
Close All

Open Forms List

Debugging

Testing and Debugging an Interface

When you run a form that you are designing, any compile-time errors that are encountered will keep the form
in Design mode.

When such errors occur, the Script Editor opens and automatically displays the first script that
generated an error and scrolls until the first error-generating line is in view. Error lines are flagged
with red X's in the Script Editor window's status strip, as shown in the following example:

59

Status strip Errar line Errar detail box

8l Script Fditor =] E3

Dbiect: | button1 X =] |[Event: | ciick x|

1] 5ub Click () |
userids = editl GetLine Text(l] -
password} = edit?. Getline Textgl)

' |If Len{userid$) < & than ———
En d IF syntax error

If Len{password$) < 8 then
errormsg e
End If

]
| =

You can display detailed information about a specific error by clicking on the corresponding X with
the right mouse button.

The misspelling of "Next" as "Nxt" in the above example causes two errors. The first error is
identified by the error-detail box above. The second error is caused when the script terminates
because an expected Next statement is not found. These errors are also identified by error-detail
boxes although they may not appear to have an associated script line.

For more information, see Debug Tools.

Debug Tools
Once all compile errors in a script are identified and fixed, the script may still not perform as expected. Errors
in control logic and calculations are not caught during the compilation process.

To help you find out why scripts are not performing the way they are expected to, VCBasic provides
the following debugging tools:

. Breakpoints
3 The STOP Statement
3 The Variable Window

Also refer to Runtime Errors.

Setting Breakpoints

You can set or reset breakpoints on any executable script line. A breakpoint is a flag that tells \VCBasic to stop
at that line while a form is running. When the line is encountered, execution stops and the Script Editor is
opened to that line.

60

E To continue line-by-line execution, click the Toolbar button at left or use the Debug:Single

Step menu command.

@
To resume execution (stopping at the next STOP statement or breakpoint), click the Toolbar

button at left or use the Debug:Resume menu command.

To resume execution in Run mode, click the Toolbar button at left or use the Run:Start menu

command.

Breakpoints may be set only on executable lines, not on comments, blank lines, or variable definitions.

Breakpoints are only active when the form is run in Debug mode. Forms running in normal Run mode ignore

breakpoint settings.

You can set or reset breakpoints on any line of executable code in a script. To do so, position the cursor in the
Status strip next to the desired line. When the cursor changes its shape to resemble a fly swatter, click the left

mouse button. This toggles the breakpoint on and off for that line.

If you want to clear all breakpoints in all scripts for the active form, use the Debug:Clear Breakpoints menu

command.

The following example shows a breakpoint in a script:

Al Script Fditor

=] E3

Object: | button1 % j Event: | Click
| Sub Click [)

C’ﬁ

userid$ = edit] Getline Text(0)
password) = edit?. Getline Text(l)

f Lenf{userid$) < & then
errormsgl)
End If

d\\.l

If Len{password$) < 8 then
Brrormsg 2
End If

|

B L

Breakpoint

61

The STOP Statement

The STOP statement in a script acts as a terminator, halting execution of the script, although no cleanup is
performed (the macro program remains in memory, any open files remain open, and variable values are
unchanged).

The STOP statement is normally used for compatibility with macros developed under previous versions of
CommBasic.

It is recommended that you do not use the STOP statement for new development; if you are attempting to
debug the flow and operation of scripts, you should use breakpoints.

Examples

Sample Macros

A number of sample macros are included with Visual CommBasic. These macros are available for your use
and show some of the functionality you can provide with VCBasic. Since you have access to the scripts and
objects in these sample macros, you can dissect them and see how each is constructed, and perhaps gain a
better understanding of macro programming. You may also modify a sample macro to customize it for your
environment or operation.

The following macros are included in the MACRO subdirectory:

Macro Name Description
I0InTest.VCB This macro uses the 10Input command to intercept a session's
I/O stream.
) When 10InTest starts, the session's 1/O stream will be

captured by the macro and not displayed to the screen.

. A TACL command (e.g., FILEINFO) may be entered in the
edit box labeled "TACL Command".

o Pressing the "Get TACL" button will send that command to
the session, and any response will be displayed in the large edit box
below. The session window will show only the command entered.

. The "Clear" button clears the data display.

The "Exit" button releases control of the 1/0O stream and closes
the macro.

TACLLog.vCB This macro allows a TACL logon; logging on to a host is the
most-commonly automated task.
It waits for ten seconds for the user to enter the first two of the
three characters preceeding the prompt and then the ">"
character. The macro should work when included on the
command line as well as at a TACL prompt.

FTPXfer.VCB This macro executes a file transfer using FTP at a specified
time of day. Only OutsideView needs to be running; the
macro creates the necessary FTP session for transferring the
specified file.

This macro has been rewritten to ensure proper "handshaking"
with an NT server and to illustrate the ME alias. A binary

62

transfer option has also been added.

DDEtoXL.VCB This example has been rewritten and updated to include
examples of error checking and correct use of DDE functions.
This macro uses DDE to transfer data between OutsideView
and Microsoft Excel. Before you run this macro, start Excel.

Macro Operation:

. Loads and verifies that Excel is running. If Excel is not
running, displays error message to user and exits.

3 When user clicks Send or Retrieve buttons, sends/retrieves
data to/from defined cell in defined sheet.

. If sheet is not loaded, attempts to load sheet.

. If defined sheet cannot be loaded, displays warning message
and continues.

. When macro is exited, it closes all open DDE channels.

These macros are shipped with OutsideView, but we are always adding more macros to our library.
To see the latest additions, visit our web page or ftp site:

World-Wide Web: http://www.crystalpoint.com/

FTP site: ftp://ftp.crystalpoint.com

Program Examples

We have included several small programs, listed below, that demonstrate the use of VCBasic functions and
statements.

Hello World
Simple Basic program that demonstrates calls to subroutines and functions

Bitmap Viewer
Displays a series of bitmap files (.bmp) in a dialog box

Find Files
Finds a test file containing a specified string

Greatest Common Factor
Updates a dialog box dynamically, based on user input

63

Quicksort
Basic implementation of recursive version of quicksort

Using the Examples

In addition to the definition of each statement or function, the Help System also offers a small working
example of each. You will notice the word Example next to the words See Also in the upper region of the
window (under the topic title).

Clicking on Example opens a separate window. The Example window contains a small working example of
a VCBasic program that uses the given statement or function. You can simply look at the contents of this
window, or you can run the example in VCBasic to see how it works.

To run the example, follow these steps:
1. Open a window containing a working version of VCBasic.

2. From the Example window, copy the example to the clipboard (you can copy either part of
the example or all of it).

3. Paste the contents into the VCBasic window. (If you copy the whole example, the lines of
description will appear as well; however, since each of these lines is preceded by an apostrophe,
they function as comments.)

4, Run the program.

To run the examples that show ODBC functions (those beginning with SQL), you will need to have
Microsoft Access installed on your machine.

To run the examples that show Object functions, you will need to have VISIO installed on your
machine.

Creates a new form. A new window opens with a blank form in Design mode.

Allows you to open a previously saved VCBasic form by selecting the file in a standard File Open
dialog box. If you choose a valid file, VCBasic opens a new window that contains the corresponding form.
The form is opened in Designh mode.

Closes the currently active form. If the form has been modified since it was last saved, the system warns you.
You may choose to save the form before closing it, close the form without saving the changes, or cancel the
operation and leave the form open.

Saves the currently active form. If the form was created with the File New command and has not yet
been saved, a File Save As dialog box appears so that you can specify a name for the file.

Allows you to save the currently active form by specifying a name for it in a standard File Save dialog box.
If the file name already exists, you are warned. You may choose to overwrite the file or cancel the operation.

Allows you to save information about the currently active form as a text file that can be viewed in
any text editor.

You choose which of the following information you want to include in the text file:
Control Names A list of all the controls in the form.

Control Definitions A list of all the properties and their values for each control.

64

Control Scripts A listing of all the scripts for each control.

Prints an illustration of the selected form to the currently selected print device.

This section of the File menu lists the last four Visual CommBasic files that have been saved. You may
quickly open any of these files by selecting it from the file list.

Exits Visual CommBasic and closes all currently loaded forms. If any form has been modified since it was
last saved, the system warns you. You may choose to save the form before exiting, close the form without
saving the changes, or cancel the operation and remain in VCBasic leaving the file open.

In Design mode, you can create, move, and resize controls; change their properties, and write scripts for them
that will execute when you start Run mode or Debug mode.

Undoes the last editing action done on a form.

Undoes the last undo.

Removes the selected controls from the form, or text from the Property Sheet or Script Editor, and
places it on the Windows clipboard.

ER
Copies the selected controls on the form, or text on the Property Sheet or Script Editor, to the
Windows clipboard.

Pastes the most recently cut or copied controls from the Windows clipboard into the active form, or text
into the Property Sheet or Script Editor.

When there are several different types of data on the Clipboard, this command allows you to choose which
one you want to paste into the form.

Removes the selected controls from the form or the selected text from the Property Sheet or Script
Editor.

Edit:Find
When the Script Editor is open, this command allows you to find a string of text in the currently active script
or all scripts associated with the form.

1. In the Find combo box, type the string or choose from the list of strings you have searched for since
the last time the Script Editor was opened.

2. Mark the checkboxes that apply to your search. You can choose to match whole words
only, match the upper/lower case of the string you type, and/or search all the scripts associated with
the active form. If you mark no checkboxes, only the current script in the Script Editor is searched.

3. Click the Find Next button to search for the next occurrence of the string.

If no match is found, a tone sounds.

Edit:Replace

When the Script Editor is open, this command allows you to find a string of text in the currently active script
or in all scripts associated with the active form, and replace it with another string.

1. In the Find combo box, type the string you want to find, or choose from the list of strings you have
searched for since the last time the Script Editor was opened.

65

2. In the Replace combo box, type the string you want to replace the string you find, or choose from
the list of replacement strings you have used since the last time the Script Editor was opened.

3. Mark the checkboxes that apply to your search. You can choose to match whole words
only, match the upper/lower case of the string you type, and/or search and replace the string all the
scripts associated with the active form. If you mark no checkboxes, only the current script in the
Script Editor is searched.

4. Click the Find Next button to search for the next occurrence of the string.

5. Click the Replace button to replace the highlighted text with the replacement text.

Or, click the Replace Next button to replace the text and then find the next occurrence.

Or, click the Replace All button to replace all occurrence in the script (or in all scripts if you have marked
that checkbox).

If no match is found, a tone sounds.
Edit:Bring to Front

Positions the selected control or controls so they appear to be in front of other controls on the active form.
If more than one control is selected, their positions remain the same relative to each other.

Edit:Send to Back

Positions the selected control or controls so they appear to be behind (in back of) other controls on the active
form.
If more than one control is selected, their positions remain the same relative to each other.

—
Edit:Alignment:Left

Aligns all the selected controls so their left edges are even with the left edge of the primary control, as shown
in the following example:

B i Hssick M=l E3

—
Edit:Alignment:Right

Aligns all the selected controls so their right edges are even with the right edge of the primary control, as
shown in the following example:

66

B i Hssicd _ (O]

Edit:Alignment:Top

Aligns all the selected controls so their top edges are even with the top edge of the primary control, as shown
in the following example:

B i Hssick M=l E3

B check
checkl
(]]

Edit:Alignment:Bottom

Aligns all the selected controls so their bottom edges are even with the bottom edge of the primary control, as
shown in the following example:

B (v Hasicl M=l 3

B~ check
checkl
(] (]

67

Edit:Alignment:Vertical Space

Positions the selected controls so that they are evenly distributed vertically within the space between the
top-most of the selected controls and the bottom-most one, as shown in the following example. The relative

order of the controls is unaltered.

B A ssicd =] E3

=_ -::het:Td =

]]]

I_ chec!Z I
I_ chec=3 I

I_ Che'=4 I

kad
Edit:Alignment:Horizontal Space

Positions the selected controls so that they are evenly distributed horizontally within the space between the
left-most of the selected controls and the right-most one, as shown in the following example. The relative

order of the controls is unaltered.

B (O Rssicy M=l E3
=_ (]]

checkl 1]
(]] (]

I_ cheniE I
I_ cheniB I

B ehegs

Edit:Alignment:Stack Vertical

Positions the selected controls so that they are stacked vertically one directly on top of the next, with the top
of the stack even with the previous position of the top of the primary control, as shown in the following
example. The relative order of the controls is unaltered, both horizontally and vertically. The horizontal

position of each control is unaltered.

68

B i Assict [_ (O]

ol B
checkl]
(]

S A

I_ -::h£=[=4 I

Edit:Alignment:Stack Horizontal

Positions the selected controls so that they are stacked horizontally one directly beside the next, with the left

edge of the stack even with the previous position of the left edge of the primary control, as shown in the
following example. The relative order of the controls is unaltered, both horizontally and vertically. The

vertical position of each control is unaltered.

B iV Rssicy =]

odi B
checkl]
(]] (]

B chedi2 |t wols

B chedds [

Edit:Alignment:Same Height
In the set of selected controls, changes the height of all secondary controls to the height of the primary
control, as shown in the following example:

B Fhasicl [_ O]
]

69

Edit:Alignment:Same Width

In the set of selected controls, changes the width of all secondary controls to the width of the primary control,
as shown in the following example:

B i Assick E=]

Edit:Alignment:Same Size

In the set of selected controls, changes the size of all secondary controls to the size of the primary control, as
shown in the following example:

B v Hasicl =]

View:Grid Settings...

Displays the Grid Settings window in which you can set up a grid of guide-points on the working window.
You can use the grid to help you size and align controls when you use the mouse to create or modify them.
The grid settings consist of:

X The number of pixels between harizontal grid points.
Y The number of pixels between vertical grid points.
Snap When enabled, controls snap to the grid points when you size or move them with the mouse.
Visible When enabled, grid points are visible in the working window.
View:Toolbar

Use this command to show or hide the bar of command buttons across the top of the window. A Toolbar
button is a single click replacement for a menu command.

For more information, see Help topic on the Toolbar.

70

View:Status Bar

Use this command to show or hide the status bar. The status bar appears at the bottom of the window and
gives a brief description of the highlighted menu item, the Toolbar button that is held down, or the control
palette button that is held down.

View:Property Sheet

Use this command to show or hide the property sheet, which is a list of properties for the currently selected
control.

For more information, see the Help topic on the Property Sheet.

View:Script Editor

Use this command to show or hide the script editor, a window in which you can view or edit a script for the
currently selected control.

For more information, see Help topic on the Script Editor.
View:Always On Top

Use this command to keep the Visual CommBasic editor window on top of all other windows on your
desktop.

This feature is helpful when testing your macro and you have breakpoints set.
Selection Mode

Selection mode cancels any other palette selection, allowing you to select controls that are already created.

Run:Start

Changes the active form to Run mode, in which you can use the controls on the form just as a user would.
Scripts you have written in Design Mode execute when events occur.

If any scripts contain errors, the Script Editor window opens, and an error message appears pointing
to the error.

Run:End

Ends Run mode and switches VCBasic to Design mode.

In Design Mode you can create, move and resize controls; change their properties; and write scripts
for them that will execute when you switch to Run mode.

Debug:Start

Starts running the current form in Debug mode.

See Testing and Debugging an Interface for details.

Debug:End

Stops running the current form in Debug mode and returns to Design mode.

71

@,
Debug:Resume

After execution has stopped at a breakpoint or a STOP statement, this command continues execution and
stops at the next breakpoint or STOP statement.

E Debug:Single Step

This command allows you to execute the current script a step at a time. Each step proceeds to the next script
line in the current script. The line that a script has stopped on is marked with a red exclamation point (!).

Note that this command will step into other scripts that may contain subroutines called by the current script.

To continue running in Debug mode, without stopping at each step, use the Resume command on the Debug
menu.

Debug:Show Variables

Turns the Variable Window on or off.

If the Variable Window is turned on, it opens automatically whenever script execution has been
suspended due to a breakpoint or a STOP statement. The Variable Window displays:

. All defined script variables.
. The variable type in blue beside the variable name.
. The current value for the variable.

You can edit the values of these variables dynamically in the variable window by typing the new value over
the old one. Since the script is still executing when you do, any changes you make to the variables may affect
the execution of the script.

The Variable Window only appears when a form is in a suspended state and is processing a
breakpoint or a STOP statement. It will always appear during these states until it is turned off.

Debug:Clear Breakpoints

Removes all the breakpoints in all the scripts for the active form. Note that form execution still stops
at STOP statements.

Window:Cascade

Arranges the open forms, in front of and offset from the previous form, so you can see the title of
each form.

This command also resizes them to a standard size.
Window:Tile

Arranges the open windows in a tiled format in which as much as possible of each form can be seen.

72

Window:Arrange lcons

If you have minimized any of the open forms, this command arranges their icons in a row along the
bottom of the working window.

Window:Close All
Closes all the open forms.
If changes have been made to any of the forms, you are prompted to save them before closing.
Window:Open Forms List
This section of the Window menu is beneath the standard commands and lists all open forms.
You may switch immediately to any of these forms by selecting it from the menu.
Help:Index
Opens the help for Visual CommBasic.
Help:Using Help
Opens the Windows help file explaining how to use Windows help.
Help:About Visual CommBasic

Opens a window with information about the version of the Visual CommBasic you are using.

Script Editor
The Script Editor is a window in which you can create and edit scripts that execute in run mode.

Syntax Seript d
and Control list macra code)

parameters Event list

Al Sdyipt Fditar
Obiect: | hutton1 | -] Event: fciick | -

1| Sub Click [)

userid$ = editl GetlLineText(0) B
password$ = edit? Getline T ext(l)

If Lenfuserid$) < & then
errormsg(1]
End If

If Len{passward$) < & then
errormsg(e)
End If

L

|l B

The Script Editor window includes:

73

. Control and event lists, which allow you to select the control and event for which you want to create
a script.

. Syntax and parameter descriptions for the selected event

. A Script Editor for creating and editing scripts. The Script Editor is a standard Windows edit control
that supports cut, copy, and paste operations. Search and replace are also supported, either within a script or
across all scripts, and are accessible through the Edit menu.

To create or edit a script for a control:
1. If the Script Editor is not open, double-click on the control to open the Script Editor. The control's
name is selected in the Control list at the top of the editor.
If the Script Editor is already open, select the control from the Control drop-down list.

2. In the Event drop-down list, select the event for which you want to write or edit a script. The list
contains all the events that apply to the selected control. Note that, when you select an event from this list, the
syntax and parameters it uses appear in the row just above the edit area of the window.

3. Write the script that you want to execute when the selected event occurs for the selected
control. You can include properties (getting and setting), methods, and events in the script.

To run the script, change to run mode by clicking this Toolbar button, or use the menu by
selecting Run;Start.

If VCBasic finds errors in the script, it returns to Design mode, and marks each error in the script
with a red X, and displays an error message about the first error encountered in the script.

The Script Editor Window in Debug Mode

Through the Script Editor Window you can also monitor and control the execution of a procedure when you
are running VisualWare in Debug mode.

The status strip on the left side of the window allows you to display and control the debugging
process. The status strip lets you set breakpoints, view compile and run errors, and it indicates which
is the current line while debugging, as shown in the following example:

74

Al Script Fditar =] E3

Object: | buttond & j Event: | Click &=
-J-| Sub Click [

Dim atternpts(5) As Integer =
£ |attempts(10) = 0

T d Subscript out of range
pa)

If Len{userid$) < & then
errormsgl)
End If

If Len{password$) < 8 then
errarmsg(e)

| =

barker for
run-tirme error

) L

Error detail box

For more information, see Testing and Debugging.

Primary Control

] (]]
B checkl]
] (1]]

In the set of selected controls, the one that was selected first, and is indicated by red handles.

The secondary controls have brown-grey handles.

Secondary Controls

B chedz J

In a set of selected controls, all those that were not selected first. Secondary controls have brown handles.

The primary control has red handles.

Dialog Box Records

Dialog box records look like any other user-defined data type. Elements are referenced using the same
recname.elementname syntax. The difference is that each element is tied to an element of a dialog box. Some
dialog boxes are defined by the application, others by the user.

See the Begin Dialog statement for more information.

75

Line Continuation

Long statements may be continued across more than one line by typing a space-underscore at the end of a line
and continuing the statement on the next line. You may add a comment after the underscore.

Dim Month As Integer _ 'month of transaction

Year As Integer ' year of transaction

DDElnitiate Function
See Also Example

Opens a dynamic-data exchange (DDE) channel and returns the DDE channel number (1,2, etc.).

Syntax DDElnitiate(appname$, topic$)

Where: Is:
appname$ A string or expression for the name of the DDE application to talk to.
topic$ A string or expression for the name of a topic recognized by appname$.

If DDEInitiate returns non-zero, the channel was opened. If zero, the channel was unable to be opened.

Appname$ is usually the name of the application's .EXE file without the .EXE filename extension. If the
application is not running, DDEInitiate cannot open a channel and returns an error. Use Shell to start an
application.

Topic$ is usually an open filename. If appname$ doesn't recognize topic$, DDElnitiate generates an error.
Many applications that support DDE recognize a topic named System, which is always available and can be
used to find out which other topics are available. For more information on the System topic, see
DDERequest.

The maximum number of channels that can be open simultaneously is determined by the operating system
and your system's memory and resources. If you aren't using an open channel, you should conserve resources
by closing it using DDETerminate.

User-defined Numeric Formats
See Also

Here are the rules for creating user-defined numeric formats when you use the Format$ function.

For a simple numeric format, use one or more digit characters and (optionally) a decimal separator.
The two format digit characters provided are zero, "0", and number sign, "#". A zero forces a
corresponding digit to appear in the output; while a number sign causes a digit to appear in the
output if it is significant (in the middle of the number or non-zero).

Examples:
Number Fmt Result
1234.56 4 ;
3

76

5
123 #.A4# 1
4.56 2
3
4
5
6
123 #H# 1
4.56 2
3
4
6
123 B A 1
4.56 2
3
4
5
6
123 00000.000 0
4.56 1
2
3
4
5
6
0
0.12 #4H# .
345 1
2
0.12 (0F:= 0
345 .
1
2

A comma placed between digit characters in a format will cause a comma to be placed between
every three digits to the left of the decimal separator.

Number Fmt Result
12345 ##. 1,234,56
67.890 #Hit 7,89
1
12345 #H#. 1,234,56
67.890 Hitt 7.8901

1 #

Note: While a period (.) is always used in the fmt to denote the decimal separator, the output string will
contain the appropriate decimal character based upon the current international settings for your machine.
Likewise, while a comma (,) is always used in the fmt specification, the output will contain the appropriate
thousands separator from the current international settings.

Numbers may be scaled either by inserting one or more commas before the decimal separator or by
including a percent sign in the fmt specification. Each comma preceding the decimal separator (or after all
digits if no decimal separator is supplied) will scale (divide) the number by 1000. The commas will not
appear in the output string. The percent sign will cause the number to be multiplied by 100. The percent sign
will appear in the output string in the same position as it appears in fmt.

Number Fmt Results
12345 #,.# 1234.
67.890 # 57
1
12345 #,,. 1.234
67.890 Hit 6
1 #
12345 #H#, 1,234,
67.890 i 57
1
0.1234 #0. 12.34
00 %
%

Characters can be inserted into the output string by being included in the format specification. The
following characters will be automatically inserted in the output string in a location matching their position in
the format specification:

-+ $ () space : /

Any set of characters can be inserted by enclosing them in double quotes. Any single character can be
inserted by preceding it with a backslash, "\". You can use the VCBasic '$CSTRINGS metacommand or the
Chr function if you need to embed quotation marks in a format specification. The character code for a
quotation mark is 34.

Numbe Fmt Result

r —

123456 $#,0.00 $1,234,567.89

7.89

123456 "TOTA TOTAL:

7.89 L:" $1,234,567.89
$4#,#.00

1234 \=\># #\ =>1,234<=
<\=

78

Numbers can be formatted in scientific notation by including one of the following exponent strings in the
format specification:

E- E+ e- e+

The exponent string should be preceded by one or more digit characters. The number of digit characters
following the exponent string determines the number of exponent digits in the output. Format specifications
containing an upper case E will result in an upper case E in the output. Those containing a lower case e will
result in a lower case e in the output. A minus sign following the E will cause negative exponents in the
output to be preceded by a minus sign. A plus sign in the format will cause a sign to always precede the
exponent in the output.

Numbe Fmt Result
r —_— I
123456 HitHt, 123.46
7.89 HHE- EO04
00
123456 H#HiH. 123.46
7.89 #He+ et+4
#
0.12345 0.00 1.23E-
E-00 01

A numeric format can have up to four sections, separated by semicolons. If you use only one section, it
applies to all values. If you use two sections, the first section applies to positive values and zeros, the second
to negative values. If you use three sections, the first applies to positive values, the second to negative values,
and the third to zeros. If you include semicolons with nothing between them, the undefined section is printed
using the format of the first section. The fourth section applies to Null values. If it is omitted and the input
expression results in a NULL value, Format will return an empty string.

Numbe Fmt Result
r —_—
123456 #,0.00;(#,0.00);"Zer 1,2345
7.89 0";"NA" 67.89
-123456 #,0.00;(#,0.00);"Zer (1,234,5
7.89 0";"NA" 67.89)
0.0 #,0.00;(#,0.00);"Zer Zero
0";"NA#"
0.0 #,0.00;(#,0.00);;"N 0.00
A"
Null #,0.00;(#,0.00);"Zer NA
0";"NA"
Null "The value is: " 0.00

Inserting Characters into the Output String
See Also

79

When you use the Format$ function, you can have characters inserted into the output string by including
them in the fmt specification. The following characters are automatically inserted in the output string in
locations matching their positions in the fmt specification:

(dash)

(plus)

(dolla
r

sign)
(open
paren

)

(close
paren

)
(spac
e)

(colo

n)

(forw
ard
slash)

Any set of characters may be inserted by enclosing them in double quotes. Any single character may be
inserted by preceding it with a backslash (\). You may wish to use the VCBasic $CStrings metacommand or
the Chr function if you need to embed double quotation marks in a format specification. The character code

for double quotes is 34.

Number Fmt
123 $#,0.00
456
7.89
123 "Total:
456 "
7.89 $#,#.00
123 \=\># #
4 \<\=

Result
$1,234,567.89

Total: $1,234,567.89

=>1,234<=

Sectioning Numeric fmt Specifications

See Also

When you use the Format$ function, a numeric fmt specification can have up to four sections, with the

sections separated by semicolons.

One section

Two sections

Three sections

80

It applies to all values.

The first applies to positive values and zeros.
The second applies to negative values.

The first applies to positive values.
The second applies to negative values.

The third applies to zeros.

Four sections The first applies to positive values.
The second applies to negative values.
The third applies to zeros.
The fourth applies to null values

If you include semicolons with nothing between them, the undefined section is printed using the format of the
first section. If the fourth section is omitted and the input expression results in a NULL value, Format$ will
return an empty string.

Examples:
Number Fmt Result

12345 #,0.00;(#,0.00);"Ze 1,234,567.89

67.89 ro";"NA"

-12345 #,0.00;(#,0.00);"Ze (1,234,567.89

67.89 ro";"NA")

0.0 #,0.00;(#,0.00);"Ze Zero
rO";"NA"

0.0 #,0.00;(#,0.00);;"N 0.00
AII

Null #,0.00;(#,0.00);"Ze NA
rO";"NA"

Null "The value is: "
0.00

GetCurValues Statement
Stores the current values for the application dialog box associated with the specified record

Syntax GetCurValues recordName

Where: Is:

recordName The name of the record. The record must have been previously dimensioned as an
application dialog box.

GetObject Function

See Also Example

Returns an OLE2 object associated with the file name or the application name.

Syntax A: GetObject(fileName)
Syntax B: GetObject(fileName, oleClassName)

81

Syntax C: GetObject(, oleClassName)

Where: Is:

fileName The name of the file where the OLE2 object is stored.

oleClassName The name of the OLE2 object, including the object class in a dot notation.

Check Box Events

Click KeyD Mous
own eDow
n
Dbl KeyP Mous
Clic ress eMov
k e
Dra KeyU Mous
gDr p eUp
op
Dra LostF Right
gov ocus Click
er
Got
Foc
us

Check Box Methods

Drag Move SetFo
cus

Loa Refre Z0rd
dCu sh er
rsor
Loa
dPic
ture

Check Box Properties

Alignment FontNa Nam
me e
Bac FontSi Pict
kCol ze ure
or

82

Capt
ion

Curs
or

Dra
gCu
rsor

Dra
gMo
de

Ena
ble

Font
Bold

Font
Itali

FontStr
ikeThr
u

FontU
nderlin
e

ForeCo
lor

Height

HelpID

Hwnd

Left

Clipboard Methods

Clear

Get
Data

GetFo
rmat

GetTe
xt

Combo Box Events

Click

Dbl
Clic

Dra
gDr
op
Dra
gOv
er

Edit
Cha
nge

GotF
ocus

KeyD
own

KeyP
ress

KeyU
p

LostF
ocus

Tabl
ndex

Tab
Stop

Tag

Top

Valu
Visi
ble

Wid
th

SetDa
ta

SetTe
xt

Mous
eDow

Mous
eMov

Mous
eUp

Right
Click

83

Combo Box Methods

Addltem

Clear

Delet
eStrin

g

Direct
ory

Drag

FindStrin
g

FindStrin
gExact

GetText

InsertStri
ng

LoadCur
sor

Combo Box Properties

BackColor

Bor
derS
tyle

Curs
or

Dra
gCu
rsor

Dra
gMo
de

Ena
ble

Font
Bold

Font
Itali

Font
Nam

FontSi
ze

FontStr
ikeThr
u

FontU
nderlin
e

ForeCo
lor

Height

HelpID

Hwnd

Left

Name

Edit Control Events

Change

84

GotF
ocus

Mov

Refr
esh

Sele
ctStr

ing

SetF
ocus

Z0r
der

Sort
ed

Styl

Tabl
ndex

Tab
Stop

Tag

Text
Top

Visi
ble

Wwid
th

Mous
eDow

Clic

Dbl
Clic

Dra
gDr
op
Dra
gov
er

KeyD
own

KeyP
ress

KeyU

LostF
ocus

Edit Control Methods

CanUndo

Drag

EmptyUn
doBuffer

FormatLin
es

GetLineFr
omChar

GetLineT
ext

LoadCurs
or

Move

Refresh

ReplaceSe
lection

ScrollText

Edit Control Properties

Alignment

Back
Color

Borde
rStyle

Curso
r

Drag
Curso

FontSiz
e

FontStri
keThru

FontUn
derline

ForeCol
or

Height

Mous
eMov
e
Mous
eUp
Right
Click
SetFo
cus
SetRe
adonl
y
SetSe
lectio
n
Undo
Z0Ord
er
Name
Passw
ordCha
r
Scroll
Bars
Tablnd
ex
TabSto
p

85

r

Drag
Mode

Enabl
e

Expa
ndTa
bs

Font
Bold

Fontlt
alic

Font
Name

Form Events
Activate

Com
mon

Dea
ctiva
te

Dra
gDr
op

Dra
gOv
er

Form Methods
Drag

Load

LoadCursor

Form Properties
BackColor

BorderStyle

86

HelpID

HideSel
ection

Hwnd

Left

MaxLen
gth

MultiLi
ne

GotF
ocus

Load

LostF
ocus

Mous
eDow

Mous
eMov

Tag
Text
Top
Visible
Width
Mous
eUp
Resiz
e
Right
Click
Timer
Unloa
d
LoadPicture SetFocus
Move ZOrder
Refresh UnloadFor
m
HasCaption Picture
Height SysMenu

Caption
Cursor
DragCursor
DragMode
Enable
FormHeight
FormWidth

Group Box Events

Click Drag
Over
Dbl Mous
Clic eDow
k n
Dra Mous
gDr eMov
op e

Group Box Methods

Drag Load
Pictur
e
Loa Move
dCu
rsor

Group Box Properties

BackColor FontNa

me

Bor FontSi

derS ze

tyle

Capt FontStr

ion ikeThr
u

Curs FontU

or nderlin
e

HelpFileName
HelpID

Icon

Left
MaxButton
MinButton

Name

Mous
eUp

Right
Click

Refre
sh

Z0Ord
er

Pictur
e

Pictur
eCrop

Pictur
eJusti

fy

Tabln
dex

Tag
Tiled
Timer
Top
Visible
Width

WindowSta
te

87

Dra
gCu
rsor

Dra
gMo
de

Ena
ble

Font
Bold

Font
Itali

ForeCo
lor

Height

Hwnd

Left

Name

Label Control Events

Click

Dbl
Clic

Dra
gDr
op

Label Control Methods

Drag

Loa
dCu
rsor

Label Control Properties

Alignment

Aut
0Siz
e

Bac

kCol
or

Bor

88

Drag
Over

Mous
eDow
n

Mous
eMov
e

Move

Refre
sh

FontBo
Id

Fontlta
lic

FontNa
me

FontSi

Tag

Tiled

Top
Visibl
e

Width

Mous
eUp

Right
Click

Z0rd
er

Hwn

Left

Nam

Tabl

List Box Events

Change

List Box Methods

Addltem

derS
tyle

Capt
ion

Curs
or

Dra
gCu
rsor

Dra
gMo
de

Ena
ble

Clic

Dbl
Clic

Dra
gDr
op
Dra
goOv
er

Clear

DeleteS
tring

e

FontStr
ikeThr
u

FontU
nderlin
e

ForeCo
lor

Height

HelpID

GotF
ocus

KeyD
own

KeyP
ress

KeyU

LostF
ocus

GetSe

GetSe
ICoun

GetTe
xt

ndex

Tag

Top

Visi
ble

Wid
th

Wor
dWr

ap

Mous
eDow

Mous
eMov

Mous
eUp

Right
Click

Refres
h

Select
String

Sellte
mRang

89

Director
y

Drag

FindStri
ng

FindStri
ngExact

Insert
String

Load
Curso
r

Load
Pictur
e

Move

List Box Properties

Alignment

Bac
kCol
or

Bor
derS
tyle

Colu
mns

Col
Wid
th

Cur
Sel

Curs
or

Dra
gCu
rsor

Dra
gMo
de

Ena
ble

Font
Bold

90

Fontlta
lic
FontNa
me

FontSi
ze

FontStr
ikeThr
u

FontU
nderlin
e

ForeCo
lor
Height

HelplD

Hwnd

Left

MultiS
elect

e

SetCar
etinde
X

SetFoc
us

SetSel

ZOrder

Nam

Pict
ure

Sort
ed

Tabl
ndex

Tab
Stop

Tag

Top

Topl
ndex

Visi
ble

Wid
th

Option Button Events

Click

Dbl
Clic

Dra
gDr
op
Dra
gOv
er

Got
Foc
us

Option Button Methods

Drag

Loa
dCu
rsor

Loa
dPic
ture

Option Button Properties

Alignment

Bac
kCol
or

Capt
ion

Curs
or

Dra
gCu
rsor

KeyD
own

KeyP
ress

KeyU
p

LostF
ocus

Move

Refre
sh

FontNa
me

FontSi
ze

FontStr
ikeThr
u

FontU
nderlin
e

ForeCo
lor

Mous
eDow

Mous
eMov

Mous
eUp

Right
Click

SetFo
cus

Z0rd
er

Nam

Pict
ure

Tabl
ndex

Tab
Stop

Tag

91

Dra
gMo
de

Ena
ble

Font
Bold

Font
Itali

Height

HelplD

Hwnd

Left

Picture Box Events

Click

Dbl
Clic

Dra
gDr
op

Drag
Over

Mous
eDow
n

Mous
eMov
e

Picture Box Methods

Drag

Loa
dCu
rsor

Load
Pictur
e

Move

Picture Box Properties

BackColor

Bor
derS
tyle

Curs
or

Dra
gCu
rsor

Dra

92

Helpl
D

Hwnd

Left

Name

Pictur

Top

Valu
Visi
ble

Wid
th

Mous
eUp

Right
Click

Refre
sh

Z0Ord
er

Tabln
dex

Tag

Tiled

Top

Visibl

gMo
de

Ena
ble
Heig
ht

Pictur
eCrop

Pictur
eJusti

fy

Push Button Events

Click

Dra
gDr
op
Dra
gov
er

Got
Foc
us

KeyD
own

KeyP
ress

KeyU
P

LostF
ocus

Push Button Methods

Drag

LoadCursor

LoadPicture

Width

Mous
eDow

Mous
eMov

Mous
eUp

Right
Click

Move

Refresh

Push Button Properties

Alignment
BackColor
Cancel

Caption

Cursor

Default
DragCursor

DragMode

Fontltalic
FontName
FontSize

FontStrikeTh
ru

FontUnderli
ne

ForeColor
Height
HelpID

SetFocus

ZOrder

Left
Name
Picture

Tabindex

TabStop

Tag
Top
Visible

93

Enable Hwnd Width
FontBold

Scroll Bar Events

DragDrop KeyPress MouseMove
DragOver KeyUp MouseUp
GotFocus LostFocus RightClick
KeyDown MouseDown Scroll

Scroll Bar Methods

Drag Method Mov SetFo
e cus
Load Refr Z0rd
Curso esh er

r

Scroll Bar Properties

Cursor LargeChang TabStop
e
DragCursor Left Tag
DragMode Max Top
Enable Min Value
Height Name Visible
HelpID SmallChang Width
e
Hwnd Tablndex

Activate Event
Applies to...

When the form becomes active, this event fires.
Syntax Sub Control_Activate()

A form becomes active if it is not currently active and the user clicks on any portion of it, or if it
gains focus due to some other application closing or giving it focus.

94

Change Event
Applies to...

This event fires when the Text of the edit control changes or when the current selection of the list
box changes.

Syntax Sub Control_Change()

This event is fired only if the change is the result of user interaction. If the change is the result of a property
being set, this event is not fired.

Click Event
Applies to...

When the control is clicked with the mouse, this event fires.

Syntax Sub Control_Click()

Common Event
Applies to...

A non-executable event.
Syntax Not applicable.

The Common event's script is used as an area to store all subroutines, functions, and data declarations and
definitions; if stored here, they are accessible to all scripts for the form.

DbIClick Event
Applies to...

When the control is double-clicked, this event fires.

Syntax Sub Control_DbIClick()

Deactivate Event
Applies to...

When the form becomes inactive, this event fires.
Syntax Sub Control_Deactivate()

A form becomes inactive if another window (another form or another application) becomes active.

DragDrop Event
Applies to...

When the user releases the mouse button over the control during a drag and drop operation, this
event fires.

Syntax Sub Control_DragDrop (source as Control, x As Single, y As Single)
Where: Is:

source The control that initiated the event.

95

X,y Coordinates that specify the location of the cursor. These coordinates are in pixels relative to the
upper left corner of the control that was dropped on.

DragOver Event
Applies to...

This event fires every time the cursor changes its position over the control while a drag and drop
operation is in progress.

Syntax Sub Control_DragOver (source as Control, x As Single, y As Single)
Where: Is:
source The control that initiated the event.
XY Coordinates that specify the location of the cursor. These coordinates are in pixels relative to the
upper left corner of the control that was dropped on.
state One of the following values indicating the current drag and drop state:
Value of state Description
0 The cursor is entering the control.
1 The cursor is leaving the control.
2 The cursor is over the control.

EditChange Event
Applies to...

When the Text in the edit portion of the combo box changes as a result of user input, this event fires.

Syntax Sub Control_EditChange()

GotFocus Event
Applies To

When the control gains the input focus, this event fires.
Syntax Sub Control_GotFocus()

A control can gain the input focus under any of these conditions:

. When the user clicks on the control

. When a form becomes active and the control is the first control to gain focus on the form.
. When it is set by the script language.

. When it is set by another application.

KeyDown Event
Applies to...

This event fires when the user presses a key other than SHIFT, ALT, or CTRL while the control has
the input focus.

96

As long as the key is held down, this event will continue to fire at a rate determined by the keyboard
repeat rate.

Syntax Sub Control_KeyDown (KeyCode As Integer, ShiftState As Integer)
Where: Is:

KeyCode The ASCII code for the key.

ShiftState A value indicating the state of the SHIFT, CTRL, and ALT keys.

If more than one of these keys is down, ShiftState is the sum of their values.

Value Description

0 No modifier key is down.
1 SHIFT is pressed.

2 CTRL is pressed.

4 ALT is pressed.

KeyPress Event
Applies to...

When the user presses a key while the control has the input focus, this event fires.

As long as the key is held down, this event will continue to fire at a rate determined by the keyboard
repeat rate.

Syntax Sub Control_KeyPress (KeyCode As Integer)

Where: Is:

KeyCode The ASCII code for the key.

KeyUp Event
Applies to...

When the user releases a pressed key while the control has the input focus, this event fires.
Syntax Sub Control_KeyUp (KeyCode As Integer, ShiftState As Integer)
Where: Is:

KeyCode The ASCII code for the key.

ShiftState A value indicating the state of the SHIFT, CTRL, and ALT keys. If more than one of these
keys is down, ShiftState is the sum of their values.

Value of ShiftState Description

0 No modifier key is down.

97

1 SHIFT is pressed.

2 CTRL is pressed.
4 ALT is pressed.
Load Event
Applies to...

When the form is first loaded, this event fires.
Syntax Sub Form_Load

This event occurs before the form is visible. The position and properties of the controls on the form
can be changed during this event without causing flicker.

LostFocus Event
Applies to...

When the control loses the input focus, this event fires.
Syntax Sub Control_LostFocus()

A control can lose the input focus if any other control gains the input focus or if a window in another
application gains the input focus.

MouseDown Event
Applies to...

When the user presses the mouse button down on a control, this event fires.

Syntax Sub Control_MouseDown (MouseButton As Integer, ShiftState As Integer, X As Integer, Y As
Integer)

Where: Is:

XY Coordinates that specify the location of the cursor. These coordinates are in pixels relative to the
upper left corner of the control.

MouseButton Indicates which mouse button or buttons are pressed down. If more than one button is
pressed, MouseButton is the sum of their values.

ShiftState A value indicating the state of the SHIFT, CTRL, and ALT keys. If more than one of these
keys is down, ShiftState is the sum of their values.

Value of MouseButton Description

1 Left mouse button pressed.

2 Right mouse button pressed.
4 Middle mouse button pressed.
Value of ShiftState Description

98

No modifier key is down.
SHIFT is pressed.

CTRL is pressed.

ALT is pressed.

A N B O

MouseMove Event
Applies to...

When the mouse pointer moves over a control, this event fires.

Syntax Sub Control_MouseMove (MouseButton As Integer, ShiftState As Integer, X As Integer, Y As
Integer)

Where: Is:

XY Coordinates that specify the location of the cursor. These coordinates are in pixels relative to the
upper left corner of the control.

MouseButton Indicates which mouse button or buttons are pressed down. If more than one button is
pressed, MouseButton is the sum of their values.

ShiftState A value indicating the state of the SHIFT, CTRL, and ALT keys. If more than one of these
keys is down, ShiftState is the sum of their values.

Value of MouseButton ~ Description

1 Left mouse button pressed.

2 Right mouse button pressed.
4 Middle mouse button pressed.
Value of ShiftState Description

0 No modifier key is down.

1 SHIFT is pressed.

2 CTRL is pressed.

4 ALT is pressed.

MouseUp Event
Applies to...

This event fires when the mouse button is released after it was pressed down over the control. Note
that this event can be fired for a control even if the cursor is not over that control.

Syntax Sub Control_MouseUp (MouseButton As Integer, ShiftState As Integer, X As Integer, Y As
Integer)

99

Where: Is:

XY Coordinates that specify the location of the cursor. These coordinates are in pixels relative to the
upper left corner of the control.

MouseButton Indicates which mouse button or buttons are pressed down. If more than one button is
pressed, MouseButton is the sum of their values.

ShiftState A value indicating the state of the SHIFT, CTRL, and ALT keys. If more than one of these
keys is down, ShiftState is the sum of their values.

Value of MouseButton Description

1 Left mouse button pressed.

2 Right mouse button pressed.
4 Middle mouse button pressed.
Value of ShiftState Description

0 No modifier key is down.

1 SHIFT is pressed.

2 CTRL is pressed.

4 ALT is pressed.

Resize Event
Applies to...

When the form is resized, this event fires.
Syntax
Sub Form_Resize (LeftSide As Integer, TopSide As Integer, RightSide As Integer, BottomSide As Integer)

Arguments are defined by the number of pixels from the upper left corner of the screen to the:

LeftSide Left side of
the form.
TopSide Top of the
form.
RightSide Right side
of the form.
BottomSide Bottom of
the form.

RightClick Event
Applies to...

100

When the control is clicked on with the right mouse button, this event fires.

Syntax Sub Control_RightClick()
Scroll Event
Applies to...

When a scroll bar control is scrolled by the user, this event is fired.
Syntax Sub Scrollbar_Scroll (Value As Integer)
Where: Is:

Value The new Value property for the scroll bar. It is the position of the scroll bar "thumb®.

Timer Event
Applies to...

When the timer for the form counts down to zero, this event fires.
Syntax Sub Form_Timer()

The Timer property for the form can be set to some number of milliseconds. This value is decremented until
it reaches zero, and then this event is fired. To have a recurring timer event, you must reset the Timer property
for the form from within this event.

Unload Event
Applies to...

When a form is being unloaded, this event fires.
Controls on the form are still instantiated and can be accessed.

Syntax Sub Form_Unload()

Addltem Method
Applies to...

Adds a specified text string to a combo box or list box.

Syntax control.Addltem text$
Where: Is:
control The control ID.

text$ The text string that is to be added to the control's list. There is a 64K limit on all strings in a combo
box or list box.

If the items in the list are sorted, the string is added to the list in alphabetical order. If the items are
not sorted, the string is added to the end of the list.

CanUndo Method
Applies to...

Checks whether there is anything in the undo buffer and whether the most recent change to an edit
control can be undone.

101

Syntax value% = control.CanUndo

Where: Is:
control The control ID.
value% This method returns one of the following values:

Value of value% Description

0 FALSE ; can't undo.
<>0 TRUE ; can undo.

Clear Method
Applies to...

Clears the contents of the control.

Syntax control.Clear
Where: Is:
control The name of the control to clear.

DeleteString Method
Applies to...

Deletes an entry in a combo box or list box at the specified index.
Syntax control.DeleteString index%

Where: Is:

control The control ID.

index% The index number of the entry to be deleted. If the index is not in range, this command has no effect.

Directory Method
Applies to...

Fills the combo box or list box with a list of files that match the indicated file-specification pattern.
Syntax control.Directory fileattributes%, pattern$

Where: Is:

control The control ID.

fileattributes% Defines the type of files to be included in the control's list. The fileattributes% argument
may contain the following values. You may sum the values to get combinations of file types.

pattern$ A string that serves as a file-specification pattern for identifying the files to be included in the
control's list. The pattern$ argument can contain wildcard characters such as asterisk (*) and percent (%).

Constant Value Meaning
DIR_STANDARD 0x0000 Normal files
DIR_READWRITE 0x0000 Read/write files

102

DIR_READONLY 0x0001 Read only files

DIR_SYSTEM 0x0004 System files
DIR_HIDDEN 0x0002 Hidden files
DIR_DIRECTORY 0x0010 System files
DIR_ARCHIVE 0x0020 Volume label
DIR_DRIVES 0x4000 Directory
DIR_EXCLUSIVE 0x8000 Exclusivity

To get only files of a specific type, use the pir_excrusive flag in addition to the others. Otherwise, read/write
files will also be included. For example, pir_excrusive + pirR_prIVEs Will return only the drive letters.

This method does not clear the control's current contents. To do so, use the Clear method.

Drag Method
Applies to...

Controls the drag status of the cursor.

Syntax control.Drag action%
Where: Is:
control The control ID.
action% An integer value that indicates the action to perform.

Value of action%Description

0 Cancel drag operation; no drop occurs.

1 Place the cursor in drag mode and start a drag and drop operation. The cursor changes into the
control's DragCursor and remains in drag and drop mode until the user releases the mouse or this method is
used again with a parameter of "2".

2 End dragging and perform a drop.

EmptyUndoBuffer Method
Applies to...

Clears an edit control's undo buffer and causes the CanUndo method to return a value of "false". The undo
buffer contains the text that was in the edit control prior to the most recent change. EmptyUndoBuffer
prevents the user from undoing a change to the edit control.

Syntax editcontrol.EmptyUndoBuffer
Where: Is:
editcontrol The edit control ID.

FindString Method
Applies to...

103

Returns the index of the first entry that fully or partially matches a specified pattern in a combo box
or list box.

Syntax index% = control.FindString (startindex%, pattern$)

Where: Is:

index% The index of the matching entry. If no match is found, -1 is returned.
control The control ID.
startindex% The index where the search is to begin.

pattern$ The pattern to be matched. Characters normally used as wildcards are treated as normal characters.

FindStringExact Method
Applies to...

Returns the index of the first entry that fully matches the specified pattern in a combo box or list
box.

Syntax index% = control.FindStringExact (startindex%, pattern$)

Where: Is:

index% The index of the matching entry. If no match is found, -1 is returned.
control The control ID.
startindex% The index where the search is to begin.

pattern$ The pattern to be matched. Characters normally used as wildcards are treated as normal characters.

FormatLines Method
Applies to...

Determines how text is returned from an edit control.

Syntax editcontrol.FormatLines value%
Where: Is:

editcontrol The edit control ID.

value% May be one of the following:

Value of value% Description

0 Returns text with hard breaks.

Non-0 Returns text without hard breaks.

GetData Method
Applies to...

Returns picture data from the clipboard control and assigns it to the picture property of any control that
supports a picture property. To get text data from the clipboard, use the GetText method on the clipboard
control.

Syntax control.Picture = clipboard.GetData (format%o)

104

Where: Is:

control Any control that has a picture property.

format% Specifies the type of data to be retrieved from the clipboard. Note that the clipboard can
contain multiple formats. You must specify the format that you wish to retrieve. The GetFormat method will
allow you to determine if data in a specific format is available on the clipboard. May be one of the following:

Value of format% Description

2 Bitmap (.BMP) file.
3 Metafile (WMF) file.
8 Device-independent bitmap (DIB) file.

GetFormat Method
Applies to...

Returns an integer indicating whether or not there is an item in the clipboard control that matches the
specified format.

Syntax value% = clipboard.GetFormat (format%)

Value of value% Description

0 FALSE ; there is not a matching format.
Non-0 TRUE ; there is a matching format.
Value of format% Description

1 Text file.

2 Bitmap (.BMP) file.

3 Metafile ((WMF) file.

8 Device-independent bitmap (.DIB) file.

GetLineFromChar Method
Applies to...

Returns the number of the line in the edit control that contains the specified character position.

Syntax line% = editcontrol.GetLineFromChar(charindex%o)
Where: Is:
line% The number of the line with the specified character.
editcontrol The edit control ID.
charindex% An integer that identifies the relative position of the character to be located. charindex% is

relative to the start of the edit control's contents.

105

For example, a charindex% of 39" specifies the thirty-ninth character from the beginning of the text in the
edit control. If the thirty-ninth character occurred on the third line of text, GetLineFromChar would return
II3II.

GetLineText Method
Applies to...

Returns the text in the specified line of the edit control.

Syntax text$ = editcontrol.GetLineText (line%)
Where: Is:

text$ The text on the specified line.

editcontrol The edit control ID.

line% The line number of the text to be captured.

GetSel Method
Applies to...

Returns the selection state of the specified list-box item.

Syntax state% = listbox.GetSel(index%)
Where: Is:
listbox The list box ID.
index% The number of the selection for which the selection state is to be returned.
state% May be one of the following:

Value Description

0 The item is not selected.
1 The item is selected.
-1 index% is out of range.

106

GetSelCount Method
Applies to...

Returns the number of selected items in the list box.

Syntax count% = listbox.GetSelCount

Where: Is:

count% For a single-select list box, GetSelCount returns:

Value of count% Description

0 No item is selected.

<>0 An item is selected.

For a multi-select list box, GetSelCount returns:

Value of count% Description

0 No item is selected.
n The total number of currently selected items.
listbox The list box ID.

GetText Method
Applies to...

Returns text from an item in a combo box or list box.

Syntax text$ = control.GetText(index%)

Where: Is:

text$ The returned text. A return value of a null string indicates either that index% is out of range or that
the specified item actually contains a null string.

control The control ID.

107

index% The index number of the item within the combo box or list box. index% can range from zero to
"listbox.GetCount-1".

GetText Method
Applies to...

Returns a text string from the clipboard object.

Syntax string$ = clipboard.GetText
Where: Is:
string$ The returned string.

InsertString Method
Applies to...

Syntax
control.InsertString index%, text$
Description

Inserts a text string at a specified position within the combo box or list box.

Details

Argument Description

control The control ID.

index% The index number of the position at which text$ is to be inserted. If index% is out of range,
InsertString has no effect.

text$ The text to be inserted at the position specified by index%.

Load Method

This method is typically used to load a new form in the current macro program. However, the Load method is
not supported by Visual CommBasic.

The recommended method of presenting multiple forms is to use the RunMacro statement.

108

LoadCursor Method
Applies to...

Loads a new cursor from a file into a control's cursor property.

Syntax A: control.Cursor = LoadCursor(filename$)
Syntax B: control.DragCursor = LoadCursor(filename$)
Where: Is:
control The control ID.
filename$ The filename should be a valid icon (.ICO), bitmap (.BMP), or cursor (.CUR) file.

Specifying an invalid file type will clear the cursor. If you want to safely clear the cursor, use LoadCursor("

Cursor is the standard cursor display; DragCursor is the cursor displayed while dragging.

LoadPicture Method
Applies to...

Loads a new picture from a file into a control's Picture property.

Syntax control.Picture = LoadPicture(filename$)
Where: Is
Control The control ID.
filename$ The file must be in a valid bitmap (.BMP), metafile (WMF), or icon file (.1CO)
format.

Move Method
Applies to...

Moves the control to the specified location and sizes it.

109

Syntax control.Move left%, top%, width%, height%

Where: Is:

control The control ID.

left% Controls other than forms: The number of pixels between the left side of the control and the left side
of the form.
Forms: The number of pixels between the left side of the form and the left side of the screen.

top% Controls other than forms: The number of pixels between the top of the control and the top of the
form.
Forms: The number of pixels between the top of the form and the top of the screen.

width% The width of the control in pixels.
height% The height of the control in pixels.

Refresh Method
Applies to...

Updates the control with any property changes that have been made to it during script execution.

Syntax control.Refresh
Where: Is:
control The control ID.

Controls are updated automatically after the current script finishes. While a script is executing,
controls will not automatically repaint themselves if their properties are changed.

Menus must be refreshed after items are added or deleted.

The Refresh method, which allows you to update controls during script execution, can be useful when a
script runs for an extended period of time.

ReplaceSelection Method
Applies to...

Replaces the currently selected text in the edit control with the specified text.

If no text is selected, the specified text is inserted at the current cursor position.

110

Syntax editcontrol.ReplaceSelection text$

Where: Is:
editcontrol The edit control ID.
text$ The text to be substituted for the currently selected text.

ScrollText Method
Applies to...

Scrolls text in the edit control horizontally and vertically. Positive values scroll down or to the right,
negative values scroll up or to the left.

Syntax editcontrol.Scroll Text vertical%,horizontal%
Where: Is:
editcontrol The edit control ID.
vertical% The number of lines that text is to be scrolled vertically.

horizontal% The number of characters that text is to be scrolled horizontally.

SelectString Method
Applies to...

Selects the first item in a combo box or list box that partially or fully matches a specified pattern
string. If no match is found, returns -1.

Syntax control.SelectString startindex%, pattern$
Where: Is:

control The control ID.

startindex% The index where the search is to begin.

pattern$ The pattern to be matched. Characters normally used as wildcards are treated as normal characters.

111

SelltemRange Method
Applies to...

Sets all items in a specified range within a multi-select list box to a specified state. This method is
valid only for multi-select list boxes, that is, those whose MultiSelect property is non-zero.

Syntax listbox.SelltemRange state%,startindex%,endindex%
Where: Is:

listbox The list box ID.

startindex% The starting index in the range of items to be changed.

endindex% The ending index in the range of items to be changed.

state% The state to which all items within the range are to be set.

Value of state% Description

0 Items are not selected.

Non-0 Items are selected.

SetCaretindex Method
Applies to...

Places the focus rectangle on a specified list-box item. If the specified item is out of range, SetCaretindex
has no effect.

Syntax listbox.SetCaretIndex index%
Where: Is:
listbox The list box ID.
index% The index of the item to receive the focus rectangle.

SetData Method
Applies to...

112

Puts a picture in the clipboard control. You must also specify the format of the data. Note that
multiple formats are supported, and that this method may be used multiple times to put up different
formats on the clipboard at the same time.

Syntax A: clipboard.SetData control.Picture, format%
Syntax B: clipboard.SetData LoadPicture(filename$), format%
Where: Is:
control Any control that has a picture property.
filename$ If you use Syntax B to load a picture from a file into the clipboard, the format of filename$
must match the format indicated by format%.
format% The format of the picture. May be one of the following:
Value of format% Description
2 Bitmap (.BMP) file.
3 Metafile ((WMF) file.
8 Device-independent bitmap (.DIB) file.

SetFocus Method
Applies to...

Places the focus on the specified control. If the Enable property for the control is zero, SetFocus has no
effect.

Syntax control.SetFocus
Where: Is:
control The control ID.

SetReadOnly Method
Applies to...

Specifies whether or not the status of an edit control is read-only.

113

Syntax editcontrol.SetReadOnly readonly%

Where: Is:
editcontrol The edit control ID.
readonly% May be one of the following:
Value of readonly% Description
0 Sets the edit control's status to read-write.
Non-0 Sets the edit control's status to read-only.

SetSel Method
Applies to...

Sets a specified item in a multiple-select list box to a specified selection state.

If the specified item is out of range, SetSel has no effect. This property is only valid for multiple-select list
boxes.

Syntax listbox.SetSel index%, state%
Where: Is:
listbox The list box ID.
index% The index of the item to be affected.
state% The state to which the specified item is to be set. May be one of the following:

Value of state% Description

0 De-selects the item.

Non-0 Selects the item.

SetSelection Method
Applies to...

Selects text in an edit control.

114

Syntax editcontrol.SetSelection start%, stop%, flag%

Where: Is:

editcontrol The edit control ID.

start% The relative position in the edit control of the first text character to be selected. If start% is "-1", no
text is selected.

stop% The relative position in the edit control of the last text character to be selected.

flag% Specifies whether the caret (which is placed at the end of the selection) will be scrolled into view.

If start% is "0" and stop% is "-1", all text is selected.

SetText Method
Applies to...

Puts a text string into the clipboard control.

Syntax clipboard.SetText(text$)
Where: Is:
text$ The text string.

Undo Method
Applies to...

Undoes the last change to the text in the edit control. If the undo buffer is empty, Undo has no effect.

Syntax editcontrol.Undo
Where: Is:
editcontrol The edit control ID.

115

UnloadForm Method
Applies to...

Unloads the current form, ending the macro.

Syntax UnloadForm me

The argument "me" is the alias of the current form.

This method does not work with any WAIT statement.

An example use of the UnloadForm method is to set it as the Click event for an Exit push button.

ZOrder Method
Applies to...

Positions a control in front of or behind other controls on a form.

Syntax control.ZOrder value%
Where: Is:
control The control ID.
value% Specifies the direction of the change. May be one of the following:

Value of value% Description

0 Brings the control to the front.
Non-0 Sends the control to the back.
[| —
:I Check Box
Properties Events Methods
Description

The check box control provides you with a non-mutually exclusive "yes or no" choice about a particular
option in your application. The following example allows a user to select various dinner choices by grouping
together a set of related check box controls. For allowing selection of mutually exclusive options, see the
Option Button control.

116

B iV RssicT =]

-Dinner Choices

[Appetizer

[¥X Soup

[Dessert

You can select a check box by clicking it with the mouse or by moving the cursor to the check box and
pressing the space bar. When a check box is selected, an X appears inside the box. When a check box is not
selected, the box is empty.

Clipboard
Methods

Description

The clipboard control allows a user to copy, cut, and paste text or graphics into an application.

The clipboard control can contain multiple pieces of data and/or text at the same time if each piece of data is
in a different format. Data of the same format will replace data already on the clipboard.

=
Combo Box
Properties Events Methods

Description

A combo box combines the features of an edit box and a list box. Use a combo box to give the user the choice
of typing as in an edit box or selecting an item from as in a list box.

117

B (T Aasick M=l B3

Select Communications Hate

14400 bps =
28 800 bps x
9600 bps

4800 hps |
2400 bps '|

You can select an item in a combo box by clicking on the drop down arrow and using the mouse to scroll to
the item. You can also use the keyboard to select an item. Combo boxes can also have other styles, which
include the ability to type new entries into the edit portion or having the drop-down area always in its down
state.

E dit .
Edit Control
Properties Events Methods
Description
An edit control allows the user to view and edit textual information. The edit control can be
configured to handle single-line or multi-line text, with an array of options to control color, font,
word wrapping and password input.
B i Pssicy =] E3
The quick hrown fox -
jumped over the lazy dog.
Doing utlherwise would be
illogical.
I
The above example edit control has been set up to handle multi-line word-wrapped text.
=)
=l Form Control
Properties Events Methods

118

Description

The form control is always created with each form. It provides an interface to the overall behavior of the
form. It also acts as a container control so that other controls may be placed on the form.

The use of the following properties for a form control are highly dependent on the developer. If the form is a
child window, you should query the value of these properties and apply them to the parent window of the
form.

Property Recommendation If Used
Caption Set the parent window's caption (VWM_SETWINDOWTEXT).
HasCaption Create a parent window with a caption bar.
Icon Set the icon to the parent window.
MaxButton Create a parent window with a max button.
MinButton Create a parent window with a min button.
SysMenu Create a parent window with a system menu.

Note: In the VCBasic Editor, the HasCaption, MinButton, and MaxButton properties are ignored because the
form's parent is an MDI window (these always have caption, min and max buttons, and system menus).

Group Box

Properties Events Methods

Description

A group box allows a group of related controls to be visually and physically grouped together on a form. As
a physical container, the group box, when moved, will also move all of its children. As a logical container, its
child options buttons will coordinate their behavior, allowing only one child option button to be on at any one
time.

| e Frsic7 HElIE

~Time Period

[Day
[Month

[Year

119

The above example group box allows the user to select a time period. Only one of the options can be selected
at a time.

A Label Control

Properties Events Methods

Description

The label control allows read-only text to be displayed on a form. The label provides control over font, color,
and word wrapping, but it allows no editing, nor does it allow focus to be set to it.

B v Hasicl =] 3

Category
Food

Gas

The above example shows how label controls add clarity to a form. Since each list box is labeled, the user of
the form can understand what is being selected.

List Box

Properties Events Methods

Description

A list box provides an easy way to present the user with a set of choices. Use a list box to display a list of
items from which the user can select one or more. If the number of items exceeds what can be displayed, a
scroll bar is automatically added to the list box.

120

B v Fssicy M= E3

Select City or Cities

The above example list box displays the set of available cities. The user can use either the mouse or the
keyboard to navigate through the selection. This list box is set to handle multiple selections.

[— .
:l Option Button
Properties Events Methods

Description

The option button control provides you with a mutually exclusive "yes" or "no" choice about a particular
option in your application. All option buttons within a group can have, at most, one choice selected at one
time. By selecting one option, all other options are turned off. The following example allows a user to select
various payment choices by grouping together a set of related option button controls. For allowing selection
of non-mutually exclusive options, see the Check Box control.

B i Assick [_ (O]

-Payment Method
(" Cash
(" Check

" Amernican Express

You can select an option button by clicking it with the mouse or by moving the cursor to the associated text
and pressing the space bar. When an option button is selected, its circle is filled in. When an option button is
not selected, the circle is empty.

121

El Picture Box

Properties Events Methods

Description

The picture box control is used to display bitmaps or metafiles on a form. These pictures can be set at design
time through the Property Sheet, or at run time through a script statement. A variety of formatting techniques
are available, including tiling, cropping, and stretching. The picture box control is also a container control,
allowing other controls to be nested inside.

B v Assic7 H=E

The above example picture control has a small bitmap, which is then tiled to fill its space. Since this control is
also a container control, this technique can be used to create a background for a group of controls.

Push Button

Properties Events Methods

Description

A push button allows the user to click on the button to initiate an action. A push button can also contain
bitmaps or icons to clarify the type of action it represents.

122

B v Fssicy =] E3

The above example is a standard push button decorated with a bitmap.

Scroll Bar Controls

Properties Events Methods

Description

The scroll bar controls provide a numeric input/output device that allows users to select parameters without
typing in values. The scroll bar can either be horizontal or vertical, and it can have its minimum and
maximum values configured.

B (v Hssicd M=l 3

Select Hate

M [

1 50 100

The above example scroll bar allows the user to select a rate by grabbing the scroll bar "thumb" and dragging
it.

Alignment Property
Applies to...

The alignment property gets a value that indicates how a control's text, caption, and/or bitmap are aligned in
the control. The specific type of alignment differs for different controls. For the edit control, this property is
read-only at run time.

123

Syntax align% = control.Alignment

For check box, edit control (multi-line only), list box, and option button, align% can be:

Constant Value Description
ALIGN_LEFT 0 Text is aligned left.
ALIGN_RIGHT 1 Text is aligned right.

For label, align% can be:

Constant Value Description
ALIGN_LEFT 0 Text is aligned left.
ALIGN_RIGHT 1 Text is aligned right.
ALIGN_CENTER 2 Text is centered.

For push button, align% can be:

Constant Value Description
ALIGN_LEFT If the control contains a bitmap, the bitmap is aligned left, text
right. If there is no bitmap, text is aligned left.
ALIGN_RIGHT If the control contains a bitmap, the bitmap is aligned right, text
left. If there is no bitmap, text is aligned right.
ALIGN_CENTER Bitmap and text are centered.
ALIGN_TOP If the control contains a bitmap, the bitmap is aligned top, text

bottom. If there is no bitmap, text is aligned top.

ALIGN_BOTTOM If the control contains a bitmap, the bitmap is aligned bottom, text
top. If there is no bitmap, text is aligned bottom.

AutoSize Property
Applies to...

Gets or sets the action taken when the size, text, font name, or font size changes for a label control.

This property allows users to match the size of the label control to the size of the label's text. This
property is valid whether or not the label has a border.

Syntax A: value% = control. AutoSize

Syntax B: control.AutoSize = value%

Where: Is:

control The control ID.
value% May be one of the following:

Constant Value Description

124

AUTOSIZE_OFF 0 FALSE; Do not autosize.

AUTOSIZE_ON <>0 TRUE; autosize.

BackColor Property
Applies to...

Gets or sets the background color for a control.

Syntax A: colorValue& = control.BackColor

Syntax B: control.BackColor = colorValue&
Where: Is:

control The control ID.

colorValue& A long integer that consists of four bytes. This value is interpreted in one of two ways:

Physical Colors: If the high bit is 0 (&H00000000), the lower three bytes represent an RGB value. Each
color (red, green, and blue) is in the range of 0x00 to OXFF. The Property Sheet presents a palette of
predefined RGB values. The actual color displayed will be the one that is closest to the specified color, based
on the specific color resolution and palette of the user's system.

System Colors: If the high bit is not zero (&H800000000), the lower three bytes are an index into the
Windows system color table. This table depends on the specific user configuration and will be dynamically
updated to reflect any change to the system color palette. Using these values will allow your form to take on
the user color preferences as defined in the control panel:

Color Value Constant System Color for:
&H80000000 SCROLL_BARS Scroll-bars gray area.
&H80000001 DESKTOP Desktop.
&H80000002 ACTIVE_TITLE BAR Active window caption.
&H80000003 INACTIVE_TITLE_BAR Inactive window caption.
&H80000004 MENU_BAR Menu background.
&H80000005 WINDOW_BACKGROUND Window background.
&HB80000006 WINDOW_FRAME Window frame.
&HB80000007 MENU_TEXT Text in menus.
&H80000008 WINDOW_TEXT Text in windows.
&H80000009 TITLE_BAR_TEXT Text in caption, size box,

scroll-bar arrow box.

125

&H8000000A ACTIVE_BORDER Active window border.

&H8000000B INACTIVE_BORDER Inactive window border.

&H8000000C /E*PPL'CAT'ON_WORKSPAC Background color of multiple
document interface (MDI)
applications.

&H8000000D HIGHLIGHT Items selected item in a control.

&HB000000E HIGHLIGHT_TEXT Text of item selected in a
control.

&HB000000F BUTTON_FACE Face shading on command
buttons.

&H80000010 BUTTON_SHADOW Edge shading on command
buttons.

&H80000011 GRAY_TEXT Grayed (disabled) text. This

color is set to 0 if the current
display driver does not support
a solid gray color.

&H80000012 BUTTON_TEXT Text on push buttons.

BorderStyle Property
Applies to...

Gets the style of the border for the control. The meaning of this property is different for each control
that it applies to.

This property is read-only at run time.

For form controls, this style determines the Windows border style for the form. If the form appears
in an MDI window, this property has no effect because MDI windows define their own frame
characteristics.

Syntax style% = control.BorderStyle

Where: Is:

Control The control ID.
style% May be one of the following:

For forms:.

Value of style% Description

0 No border.

126

1 Single-pixel border.
2 Sizable border.
3 Dialog border.

For combo box, edit control, group box, label, list box, and picture box controls:

Value of style% Description

0 No border (not valid for combo box).
1 Single-pixel border.
2 Indented into the screen.

Cancel Property
Applies to...

Identifies a button as the one to be activated when the user presses the Escape key.

Syntax A: state% = control.Cancel

Syntax B: control.Cancel = state%
Where: Is:

control The control ID.

state% May be one of the following:

Value of state% Description

0 Control is not activated when the user presses the ESC key.
Non-0 When an ESC is pressed, the control's Click event is fired.

If the Cancel property is set for a button, the button will be activated when the user presses the ESC key,
which is an indication that the user wishes to cancel the form. You must implement a script to perform the
actual Cancel operation.

Only one push button may have the Cancel property set to non-zero at one time. Setting the Cancel property
to non-zero for one control will reset all the other push button controls.

Caption Property
Applies to...

Gets or sets the text that is used for the title, caption, or label portion of a control.
Syntax A: text$ = control.Caption
Syntax B: control.Caption = text$

For check box, form, group box, label, option button, and push button controls:

127

Syntax A : Is:

control The control ID.

text$ Appears as the caption or label of the control.

Columns Property
Applies to...

Gets or sets whether a list box displays a single column or multiple columns. This property is read-only at run
time.

For multiple-column list boxes, column width is determined by the ColWidth property value.

Syntax A: cols% = listbox.Columns
Syntax B: listbox.Columns = cols%
Where: Is:
listbox The list box ID.
cols% A value indicating the column setting of a list box.

Value of cols% Description

0 Control is a single-column list box.

Non-0 Control is a multiple-column list box.

ColWidth Property
Applies to...

Gets or sets the width, in pixels, of columns in a list box. This is only used for list boxes that have
their Columns property set to true.

Syntax A: width% = listbox.ColWidth
Syntax B: listbox.ColWidth = width%
Where: Is:
listbox The list box ID.
width% The number of pixels specifying the width of each column of a list box.

CurSel Property
Applies to...

128

Gets or sets the currently selected item in a listbox. A value of -1 is used to indicate that no item is
selected.

This property is only valid for single-select list boxes. If the style of the list box is set to multiple-select, use
the GetSel and SetSel methods.

Syntax A: item% = listbox.CurSel
Syntax B: listbox.CurSel = item%
Where: Is:
Listbox The list box ID.
item% The index of the currently selected item.
List box

Cursor Property
Applies to...

Sets the cursor to be displayed as the pointer when the mouse is placed over a control.

This property can be set at design time using the Property Sheet. The desired cursor can be selected with a file
browser, allowing the cursor to be previewed before it is selected.

Syntax: set control.Cursor = LoadCursor(filename$)
set control1.Cursor = control2.Cursor

set control1.Cursor = control2.DragCursor

Where: Is:

control, controll, control2 The control ID.

filename$ The filename should be a valid icon (.ICO), bitmap (.bmp) or cursor (.CUR) file. An
invalid file type will clear the cursor. If you want to clear the cursor during run time, use LoadCursor(*" ').

Check box List box
Comb Option

129

0 box button

Edit Picture
contr box
ol
Form Push
button

Grou Scroll bar
p box
Label
contr
ol

Applies to...

Gets or sets whether a button is to be activated when the user presses the ENTER key.

Syntax A: state% = control.Default

Syntax B: control.Default = state%
Where: Is:

control The control ID.

state% }Avalue setting or indicating whether the ENTER key activates the button.

Value of state% Description
0 Control is not activated when the user presses the ENTER key.
Non-0 When the ENTER key is pressed, the control's Click event is fired.

If the Default property is set for a button, the button will be activated when the ENTER key is pressed during
run time (assuming the control with the focus does not process this key). You must implement a script to
perform the actual Default operation.

Only one push button may have the Default property set to non-zero at one time. Setting the Default property
to non-zero for one control will reset all the other push button controls on the form.

Push button

DragCursor Property
Applies to...

Determines the cursor to be displayed as the pointer during a drag-and-drop operation.

130

Syntax:

set control1.DragCursor = control2.Cursor

set controll.DragCursor = control2.DragCursor

Where:

set control.DragCursor = LoadCursor(filename$)

Is:

control, controll, control2 The control ID.

filename$

The filename should be a valid icon (.1CO), bitmap (.bmp) or cursor (.CUR) file. An

invalid file type will clear the cursor. If you want to clear the cursor during run time, use LoadCursor(*" '").

This cursor can be set at any time, allowing for complex cursor behavior during a drag/drop

sequence. For example, the drag cursor can change based on what control it is over, or based on
some function of time.

This property can be set at design time using the Property Sheet. The desired cursor can be selected

with a file browser, allowing the cursor to be previewed before it is selected.

Check box

Combo
box

Edit
control

Form

Group
box

Label
control

Check box

Combo
box

Edit
control

Form

Group
box

Label
control

List box

Option
button

Picture
box

Push
button

Scroll
bar

List box

Option
button

Picture
box

Push
button

Scroll
bar

131

Check box

Combo
box

Edit
control

Form

Group
box

Label
control

Check box

Com
bo
box

Edit
cont
rol

Gro

up
box

Check box

Com
bo
box

Edit
cont
rol

Gro

up
box

Check box

Com
bo

132

List
box

Option
button

Picture
box

Push
button

Scroll
bar

Label
contr
ol

List
box
Optio

butto

Push
butto

Label
contr

List
box
Optio
butto

Push
butto

Label
contr
ol

List

box

Edit
cont
rol

Gro

up
box

Check box

Com
bo
box

Edit
cont
rol

Gro

up
box

Check box

Com
bo
box

Edit
cont
rol

Gro

up
box

Check box

Com
bo
box

Edit
cont
rol

box

Optio

butto

Push
butto

Label
contr
ol

List
box

Optio
butto

Push
butto

Label
contr
ol

List
box
Optio

butto

Push
butto

Label
contr
ol

List
box

Optio

butto

133

Gro

up
box

Color Value
&H80000000
&H80000001
&H80000002

&H80000003

&H80000004
&H80000005

&H80000006
&HB80000007
&HB80000008
&HB80000009

&HB8000000A
&H8000000B

&H8000000C

&H8000000D
&HB8000000E
&HB8000000F
&HB80000010

&H80000011

&HB80000012

Check box

134

Push
butto

Constant

Label
contr

SCROLL_BARS
DESKTOP

ACTIVE_TITLE_BA
R

INACTIVE_TITLE_
BAR

MENU_BAR

WINDOW_BACKG
ROUND

WINDOW_FRAME
MENU_TEXT
WINDOW_TEXT
TITLE_BAR_TEXT

ACTIVE_BORDER

INACTIVE_BORDE
R

APPLICATION_WO
RKSPACE

HIGHLIGHT
HIGHLIGHT_TEXT
BUTTON_FACE
BUTTON_SHADOW

GRAY_TEXT

BUTTON_TEXT

System Color for:
Scroll-bars gray area.
Desktop.

Active window caption.

Inactive window caption.

Menu background.

Window background.

Window frame.
Text in menus.
Text in windows.

Text in caption, size box, scroll-bar
arrow box

Active window border.

Inactive window border.

Background color of multiple
document interface (MDI)
applications.

Items selected item in a control.
Text of item selected in a control.
Face shading on command buttons.

Edge shading on command
buttons.

Grayed (disabled) text. This color
is set to O if the current display
driver does not support a solid gray
color.

Text on push buttons.

Com
bo
box

Edit
cont
rol

Gro

up
box

Check box

Com
bo
box

Edit
cont
rol

For
m

Gro
up
box

Lab
el
cont
rol

Check box

Com
bo
box

Edit
cont
rol

For
m

Lab
el
cont

ol

List
box

Optio

butto

Push
butto

List
box

Optio
n
butto
n

Pictur
e box

Push
butto
n

Scroll
bar

List
box

Optio
n
butto
n

Pictur
e box

Push
butto
n

Scroll
bar

135

rol

I

—mO OO OVO— 0L O =-.—- O0C

A - 000 v +— >

O wveow

o

—_

n O+~ n

Whether

136

Is:

editcontrol The edit control ID.
state% May be one of the following:

Value of state% Description

0 FALSE. The text remains highlighted when the edit control loses focus.
Non-0 TRUE. The text does not remain highlighted when the edit control loses
focus.

Normally, when text in an edit control is highlighted and the edit control loses focus, the highlight is removed
until the focus returns to the edit control. Setting this property to "'0"* prevents the highlight from being
removed.

Hwnd Property
Applies to...

Gets the Windows HWND handle for the control. This property is read-only at run time.
Syntax hwnd% = control.Hwnd

Where: Is:

control The control ID.

hwnd% The control's HWND handle. Refer to the Windows SDK on what the HWND handle is and how it
can be used.

Check box List
box

Comb Option
0 box button
Edit Picture
contr box
ol
Grou Push
p box button
Label Scroll
contr bar
ol

137

Check box List

box
Combo Optio
box n
butto
n
Edit Pictur
control e box
Form Push
butto
n
Group Scroll
box bar
Label
control
Applies to...

Gets or sets the largest value a scroll bar will represent.

Syntax A: amount% = scrollcontrol.Max
Syntax B: scrollcontrol.Max = amount%
Where: Is:
scrollbar The scroll bar ID.
amount% The maximum value. The difference in value between the Max and Min values for a scroll

bar cannot be greater than 65535.

Scroll bar

MaxButton Property
Applies to...

Gets the state of a form's MaxButton property.
[Gets a value indicating whether a form with a caption bar has a standard Windows maximize button.]

Syntax A: state% = form.MaxButton

138

Syntax B: state% = me.MaxButton

Where: Is:

form The form ID.
state% If this property is TRUE, the form has a standard Windows maximize button.

Value of state% Description

0 FALSE. The form has no maximize button.

Non-0 TRUE . The form has a maximize button (forms with title bars only).

The HasCaption property must be set to True for this property to have an effect. [The form must
have a title bar that holds a caption.]

MaxButton is read-only at run time.
Use the form ID or the operator ""me"".
Forms that are MDI windows always have a caption and a maximize button.

You can choose to ignore this property and change the setup of the form.

The TRUE constant can be used in a form to indicate a non-zero [True] condition.
The FALSE constant can be used in a form to indicate a zero [False] condition.
Form

MaxLength Property
Applies to...

Gets or sets the maximum number of characters that can be entered into an edit control. A setting of
zero places no limit on the number of characters, aside from the limitations set by the operating

system.
Syntax A: length% = editcontrol.MaxLength
Syntax B: editcontrol.MaxLength = length%
Where: Is:
editcontrol The edit control ID.

length% Must be from zero to the maximum imposed by the operating system. If the user attempts to enter
more characters than this value, a beep will be generated and the excess characters will be ignored.

139

Edit control

Min Property
Applies to...

Gets or sets the smallest value a scroll bar will represent.

Syntax A: amount% = scrollbar.Min
Syntax B: scrollbar.Min = amount%
Where: Is:
scrollbar The scroll bar ID.
amount% The minimum value. The difference in value between the Max and Min values for a scroll

bar cannot be greater than 65535.

Scroll bar
MinButton Property

Applies to...

Gets the state of a form's MinButton property.

[Gets a value indicating whether a form with a caption bar has a standard Windows minimize
button.]

Syntax A: state% = form.MinButton

Syntax B: state% = me.MinButton

Where: Is:

form The form ID.
state% If this property is TRUE, the form has a standard Windows minimize button.

Value of state% Description

0 FALSE. The form has no minimize button.

Non-0 TRUE. The form has a minimize button (forms with title bars only).

140

The HasCaption property must be set to True for this property to have an effect. [The form must

have a title bar that holds a caption.]

MinButton is read-only at run time.

Forms that are MDI windows always have a caption and a minimize button.

You can choose to ignore this property and change the setup of the form.

Form

MultiLine Property
Applies to...

Gets the state of an edit control's multi-line property.

Syntax state% = editcontrol.MultiLine

Where: Is:
editcontrol The edit control ID.
state% The state of the edit control.

Value of state% Description

0 FALSE. The edit control is single-line.
Non-0 TRUE. The edit control is multi-line.

This property is read-only at run time.

Multi-line edit controls can have the Alignment property set to a value other than left-justified.

Single-line edit controls ignore the Alignment property.

Multi-line edit controls ignore the PasswordChar property.

Edit control

MultiSelect Property
Applies to...

Gets the type of selection list that the list box presents to the user.

141

Syntax state% = listbox.MultiSelect

Where: Is:
listbox The list box ID.
state% May be one of the following:

Value of state% Description

0 Single selection only.

1 Simple multiple selection. The user can switch the selection state of each item in the list
box by clicking on it.

2 Extended multiple selection. The user can click on an item and drag, selecting a set of items
at one time. Users can also CTRL+click to select several individual items

Either a list box can have just one item highlighted at a time, or it can have multiple items
highlighted simultaneously.

This property is read-only at run time.

This property can be set through the Property Sheet at design time.

List box

Name Property
Applies to...

Gets the name of the control.

Syntax name$ = control.Name
Where: Is:
Control The control ID.

name$ The control name

The control name may be any valid name recognized by the scripting language. It must, however, be unique
within a given form. For a form, in addition to the name set by the user, the keyword "'me"* can also be used
in place of the name of the form.

142

You can create arbitrary names by enclosing the name in brackets. For example, [This is a test control!]
can be used as the name of the control. When, in a script, you refer to controls that have names of this type,

always include the brackets.

This property is read-only at run time. The name of the control can only be set through the Property Sheet

during design time.

Check box

Combo
box

Edit
control

Form

Group
box

Label
control

Password
Char
Property
Applies to...

Gets or
sets the
passwor
d
characte
rused in
an edit
control.

Syntax A:

chr$ =
editcontrol.Pass
wordChar

Syntax B:

editcont
rol.PasswordCha
r=chr$

List box

Option
button

Picture
box

Push
button

Scroll
bar

Option
button

143

Where: Is:

chr$ When chr$ contains a string, password mode is turned on, and the first character in this string is used
as the placeholder character. To turn off password mode, set the password character to the null string ("").

A password field allows the user to enter text without having it appear on the screen. The text that is entered
is the Text property of the control, but the PasswordChar is the text that is displayed for each character
typed.

The first character of the chr$ string is the password character, typically an asterisk (*), which is displayed in
the edit control to hide the actual text for the edit control.

The Text property contains the string that is the actual text for the edit control.

This property is only valid for single-line edit controls.

Edit control

Picture Property
Applies to...

Gets or sets the picture for the control. The picture can be loaded from a file or copied from the Picture
property of another control.

Syntax A: set control.Picture = LoadPicture(filename$)

Syntax B: set control2.Picture = controll.Picture

Where: Is:

control The control ID.

controll, control2 Using Syntax B, you can set the Picture property of control2 to the Picture
property value of controll.

filename$ The name of the picture file. If it is not a valid picture file, if it does not exist, or if
filename$ is blank, the picture will be cleared.

Value of filename$ Description

.BMP All applicable controls.
ACO or WMF Group box; picture; push button controls.

For check box, list box, and option button controls, the bitmap for these controls is divided into four
even sections horizontally, and each section is used for the different states of the control. From left
to right, these states are: ON, OFF, ON pressed, and OFF pressed.

For check boxes and option buttons, the picture property is used instead of the standard square or circle.

144

For list boxes, the picture property is used to indicate the selection state of each item.

For group box, picture, and push button controls, the picture is displayed on the background of the control.

Form

Group
box

List box

Check
box

Combo
box

Edit
control

Group
box

Label
control

Che
ck
box

Com
bo
box

Edit
cont
rol

List
box

Chec
k box

Comb
0 box
Edit
contr
ol

Form

Picture box

Push
button

List
box

Option
button

Picture
box

Push
button

Scroll
bar

Optio
n
butto
n

Push
butto
n

Scroll
bar

List
box

Option
button

Picture
box

Push
button

145

PO -—TTPK +STOTO-TY ~—XO0O—o

~+

U')'—"('DG)

-~ O

n —~+ O w

Grou
p box

Label
contr

146

Scroll
bar

Edit control

Tiled Property
Applies to...

Gets or sets a value indicating whether the bitmap picture is displayed once in the control or tiled throughout
the control.

Syntax A: state% = control.Tiled

Syntax B: control.Tiled = state%
Where: Is:

control The control ID.

state% May be one of the following:

Value of state% Description

0 FALSE. The bitmap is displayed according to its PictureJustify and
PictureCrop properties.

Non-0 TRUE. The bitmap is tiled so that it fills the control.

If the Tiled property is true, the PictureJustify property has no effect (its value is ignored).

If the Picture property for a form, group box, or picture is a bitmap, Tiling fills the control with
multiple copies of the picture assigned to the control.

If the Picture property is not a bitmap, the Tiled property has no effect.

Form
Group box

Picture box

Timer Property
Applies to...

This property sets the number of milliseconds before the Timer event is triggered.

Syntax A: form.Timer = milliseconds%
Syntax B: me.Timer = milliseconds%
Where: Is:

147

form The form ID.

milliseconds% The number of milliseconds to wait before triggering the Timer event.
This property is write-only at run time.
Use the form ID or the operator "me".

Form

Top Property
Applies to...

Gets or sets the top position of the control, in pixels.

Syntax A: top% = control.Top
Syntax B: control.Top = top%
Where: Is:

control The control ID.

top% For aform, Top is the number of pixels between the top edge of the form window and the top of the
parent window of the form.

For controls other than forms, Top is the number of pixels between the control and the top edge of the form
or parent control.

Check box List
box
Combo Option
box button
Edit Picture
control box
Form Push
button
Group Scroll
box bar
Label
control
BINARY Can be either ON or OFF.

148

DELETETABS. Can be either ON or OFF
HOSTNAME The host name.

NOEXTENSIONS Can be either ON or OFF.
PACKETDEPTH The packet depth (<= 16).
PCNAME The PC name
PRIMARYEXTENT The primary extension (<= 65535).
PRINTFILE Can be either ON or OFF.
RECORDLENGTH The record length (<= 4096).
SECONDARYEXTE The secondary extension (<= 65535).
NT

SKIPPERF Can be either ON or OFF.
SHOWSTATUSDIA Can be either ON or OFF.

LOG

STATUSPAUSE Can be either ON or OFF.
STRIPHIBIT Can be either ON or OFF.
TABINTERVAL The tab interval (<= 80)

WAIT Can be either ON or OFF.

If function is successful, it returns item$. If it is not successful, it returns a null string.

FtTrigger$ Function [VCBasic Extension]

See Also Example

Requests special actions for file transfer.

Syntax FtTrigger$ (command$, secondary_command$)

Where:

Is:

command$

secondary_command$

A string specifying the file transfer command to trigger.

When required, a string providing the command$ argument. Commands that do
not require this argument will ignore any value passed.

If command$ Valueis: secondary command$ Value must be:

SEND

<filename> Invalid for ftp transfers. For IXF, <filename(s)>

will be appended to PCNAME list.

149

RECEIVE

not overwrite PCNAME setting.

ABORT
ASCII
BINARY
BYE
CONNECT
CD
CLOSE
DIR
ERASE
GET
INPUT
LS
OPEN
PUT

<filename> Invalid for ftp transfers. For IXF, <filename> will

None required. Not valid for ftp transfers.
None required. (ftp only)

None required. (ftp only)

None required. (ftp only)

None required. (ftp only)

<path> (ftp only)

None required. (ftp only)

<path> (ftp only)

<filename> (ftp only)

<host_filename local_filename> (ftp only)
<input string> (ftp only)

<path> (ftp only)

<IP address> (ftp only)

<local_filename host_filename> (ftp only)

For IXF, FtTrigger returns "OK" if successful or null string on failure.

For FTP, returns the next status that would apply for FtQuery$.

This function is normally used for controlling file transfers under program control.

FtTypeSet$ Function

See Also Example

Queries the current file transfer protocol, or changes to a new file transfer protocol.

Syntax FtTypeSet$ (protocol$)

Where: Is:
null Requests the current file transfer protocol in effect.
protocol$ Specifies the file transfer protocol to change to.

Valid protocol$ values are "FTP" and "IXF".

150

If protocol$ is null, FtTypeSet returns the current file transfer protocol in effect. Values are the same as for
protocol$ above.

lolnput$ Function [VCBasic Extension]
See Also Example

Suspends the emulation module, allowing the macro program to receive data from the 1/0 module.
Syntax lolnput$ (timeout%, char_count%, input_flags% [, terminate$])

Where: Is:

timeout% The idle timeout period in seconds. If zero, then there is no timeout.

char_count% Specifies the number of characters to receive before ending the lolnput$ function. The
maximum value for char_count% is 32767.

input_flags% Flags that control the behavior while the function is active. The flags may be added
together for multiple functionality.

Value of input_flags% Description

4 Include termination character in return data string.

8 Translate CR or LF to CRLF combination in return
data string.

32 Echo the received 1/O data to the local CRT screen and the

emulator. See Note Below

terminate$ Special termination string to match against. If this
optional argument is omitted, the default termination
characters are either CR or LF.

lolnput$ returns the data received from the 1/0 module.

When the lolnput$ function is executed, terminal emulation is suspended. All 1/O is then routed through the
executing macro program. The loInput$ function, along with Emit and EmitBrk , allow you to create
custom remote applications such as a mini-BBS or a front-end user verification system.

If the amount of data received is greater than char_count%, only the first char_count% characters are
returned and the rest are discarded.

The loInput$ function can be terminated by issuing another lolnput$ function with a timeout% of zero and
a char_count% of zero.

If flag value 32 is set (Echo) then OutsideView will buffer SendKey-ed and/or Emit-ted
characters until the host indicates it is able to accept additional character input. This is
the same buffering that occurs during cut-and-paste processing.

If flag value 32 is not set (Do not Echo) then the macro programmer must ensure that
the host is in the proper state to accept additional character input before data is sent.
There is effectively no buffering and WaitCrtUnlock(timeout%) will always return
immediate success.

151

When transitioning between echoing and not-echoing actions, the macro
programmer should assume that any pending or following data will be immediately sent
to the host. Furthermore, WaitCrtUnlock(timeout%) will return immediate success if it
were called during such a transition.

loQuery$ Function
See Also Example

Queries the current 1/O settings.
Syntax loQuery$ (item$)

Where: Is:

item$ A string specifying the type of query to perform.

Value of item$ Description

* (asterisk) Returns list of all current configuration settings for the 1/0 module.
? (question mark) Returns list of all valid keywords acceptable as item$.

\ (backslash) Returns list of commands accepted by the loTrigger$ function.

Async Value Description

CARRIER Can be TRUE or FALSE
COMPORT Can be COM1, COM2, COM3 or COMA4.
BAUD Can be 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 56000, 57600, 115200, 128000 or
256000.
FLOW Can be NONE, XON/XOFF, RTS/CTS or DSR/TSR.

COMTARGET Can be HOST or MODEM.

INITSTRING The string value for modem initialization.

CHARSIZE Canbe5, 6,7o0r8.

STOPBITS Canbel,150r2.

PARITY Can be E (even), M (mark), N (no), or O (odd).
BREAKPERIOD Can be from zero to 3000. Value indicates milliseconds.
DUPLEX Can be NONE, HALF or HALF-LF.
SHOWERRORS Can be TRUE (writes 1/O errors to the session log) or FALSE.
TIMETOLIVE Can be from zero to 3000. Value indicates milliseconds.

152

TAPI Value Description

LINENAME Descriptive name as defined in Control Panel Modems applet (such as "USRobotics Sportster 14400")

LINEID Numeric ID of the item defined by LINENAME (zero for the first entry, 1 for the second,
etc.).

PHONENUMBER Number to dial, including any "outside line" and area code digits.
TCP/IP or SPX Value Description

CARRIER Can be TRUE or FALSE

TELTARGET <host name or IP address> [<port number>]
ENABLENVT Can be TRUE or FALSE.

ECHO Can be TRUE or FALSE.

BINARY Can be TRUE or FALSE.

TERMINAL Can be TRUE or FALSE.

LINEMODE Can be TRUE or FALSE.

loQuery returns a string containing the requested information.

When multiple items (lines) of information are returned, each item is separated by a CR-LF
combination.

loSet$ Function
See Also Example

Prepares an 1/O setting to be changed. The change goes into effect when an loTrigger$("CONNECT")
function is executed.

Syntax loSet$ (item$, value$)

item$

value$

Where: Is:

A string specifying the 1/O setting to change.

The value to use for the specified setting. Allowed values depend on item$, as described below.

Async Value Description

COMPORT Can be COM1, COM2, COM3 or COMA4.

BAUD Can be 110, 300, 600, 1200, 2400, 4800, 9600, 14400, 19200, 38400, 56000, 57600,
115200, 128000 or 256000.

153

FLOW Can be NONE, XON/XOFF, RTS/CTS or DSR/TSR.
COMTARGET Can be HOST or MODEM.

INITSTRING Any string value for modem initialization.
CHARSIZE Canbeb5, 6,7 or 8.

STOPBITS Canbel,150r2.

PARITY Can be E (even), M (mark), N (no), or O (odd).
BREAKPERIOD Can be from zero to 3000. Value indicates milliseconds.
DUPLEX Can be NONE, HALF or HALF-LF.

SHOWERRORS Can be TRUE (writes /O errors to the session log) or FALSE.

TAPI Value Description

LINENAME Descriptive name as defined in Control Panel Modems applet (such as
"USRobotics Sportster 14400")

LINEID Numeric ID of the item defined by LINENAME (zero for the first entry, one for the
second, etc.).

PHONENUMBER Number to dial, including any "outside line" and area code digits.
TCP/IP or SPX Value Description

TELTARGET <host name or IP address> [<port number>]
ENABLENVT Can be TRUE or FALSE.

ECHO Can be TRUE or FALSE.

BINARY Can be TRUE or FALSE.

TERMINAL Can be TRUE or FALSE.

LINEMODE Can be TRUE or FALSE.

If value$ is within range, it is returned. Otherwise, the current setting is returned.

New settings specified by this function do not take effect until a loTrigger$("CONNECT") function is
executed.

loTrigger$ Function [VCBasic Extension]
See Also Example

Invokes the change to the 1/0O settings previously requested with an 10Set$ function, or requests a special
action from the 1/0 module.

154

Syntax loTrigger$ (command$)

Where: Is:

command$ A string specifying the 1/O action to invoke.
Valid strings are BREAK, CONNECT and HANGUP.

If loTrigger is successful, it returns the string "OK". If it is not successful, it returns a null string.

Typical uses for l1oTrigger$ are command$ values of CONNECT to establish a connection (using any
settings specified by the loSet$ function) and HANGUP to terminate a connection.

loTypeSet$ Function

See Also Example
Queries the type of the current I/O connection or changes to a new 1/0 connection type.
Syntax loTypeSet$ (item$)

Where: Is:

item$ If null, queries the current connection type.

When set to a connection string, the new connection type goes into effect when an
loTrigger$("CONNECT") function is executed. Valid strings are "Asynchronous”, "TCP/IP: Windows
Sockets" or "NonStop IPX/SPX".

loTypeSet will return return_value$ containing the name of the current or set 10. Valid strings are the same
as for item$ above, and are case-sensitive.

When loTypeSet$ is called with the proper item$, the 1/0 connection type is changed immediately, but does
not connect with a host until an loTrigger$("CONNECT") function is executed.

RunMacro Statement
Runs another macro program from within the current macro program.

Syntax RunMacro $macroname [, associationFlag%]

Where: Is:

$macroname Filename of a macro program in the OutsideView MACRO subdirectory.

AssociationFlag TRUE (non-zero) or FALSE (zero)

155

The called (child) macro begins execution when loaded. The calling (parent) macro, however,
continues execution independently after invoking the child macro. The parent macro DOES NOT
wait for the child macro to complete before continuing its execution.

Since OutsideView can have multiple sessions open simultaneously, you may specify the association of a
macro with a particular session.
The value of associationFlag allows you to specify this association.

TRUE (non-zero) This is the default.

Associates the new macro with the session containing the parent
macro.

If the parent macro does not have any session associated with it,
the macro will be associated with the currently active session.

FALSE (zero) Associates the new macro with the currently active session.

The RunMacro statement allows you to develop specific, modular macros and then include them by
reference within another macro. For example, you might develop a macro that logs onto a specific host or
service, and then call that macro from different macros that use different connection types to reach the host or
service.

Caution: Take care not to have a macro call itself, as this can result in an endless loop.

Shutdown Statement [VCBasic Extension]

The Shutdown statement shuts down (terminates) OutsideView.
Syntax Shutdown

The Shutdown statement is used primarily when a macro is started by another application. Another Windows
application can start OutsideView and run a macro. The Shutdown statement lets the macro exit and returns
control to the initial application.

Caution: You should not normally include a Shutdown statement in a macro you run directly from
OutsideView, as OutsideView itself would then be closed when the macro is through running.

Should you wish to manipulate OutsideView via macros, AppActivate will not switch focus to OutsideView;
you must use AppClassActivate.

WaitCrtCursor Function
See Also Example

Waits a specified amount of time for the cursor to be positioned at a specific CRT screen position
Syntax WaitCrtCursor (row%, column%, timeout%)

Where: Is:

156

row% The CRT screen row of the position to wait for the cursor.
column% The CRT screen column of the position to wait for the cursor.

timeout% The number of seconds to wait for the cursor to arrive at the specified position.

WaitCrtCursor will return zero if the timeout period expires prior to the cursor's arrival, and non-zero if the
cursor arrives at the specified position before the timer expires.

To convert a cell position into a row and column value, use the CrtCol and CrtRow functions.

WaitCrtCursor waits for the cursor to reach a particular position on the screen, but makes no demands on
the state of the session (i.e., is the keyboard locked?). Some connection methods, such as Async, can take
longer than others to unlock the keyboard. The solution is to perform a WaitCrtUnlock following the
WaitCrtCursor.

WaitCrtUnlock Function

See Also Example

The WaitCrtUnlock function waits a specified amount of time for the keyboard to unlock.

Syntax WaitCrtUnlock (timeout%)

Where: Is:

timeout% The number of seconds to wait for the keyboard to unlock.

WaitCrtUnlock will return zero if the timeout expires before the keyboard unlocks. Non-zero indicates the
keyboard is unlocked, and the value indicates the number of seconds remaining in the set timeout period.

Some non-conversational (i.e., Tandem block mode or 3270) modes automatically lock the keyboard after
each transmit action. The WaitCrtUnlock function allows you to easily synchronize with the host.

WaitDCD Function [VCBasic Extension]

See Also Example
Waits for the Data Carrier Detect signal to go high in a specified time period.
Syntax WaitDCD (timeout%)

Where: Is:

157

timeout% The number of seconds to wait for the DCD signal.

WaitDCD returns zero if the timeout expires before carrier is detected. Non-zero indicates a carrier signal,
with the value being the number of seconds remaining in the set timeout period.

The WaitDCD function polls the 1/0 module to check if the logical DCD status has changed to a TRUE
condition. For an async connection, WaitDCD is typically used to sense if there is an active modem
connection to a host. For network connection methods, WaitDCD can be used to verify that an outstanding
call request has completed.

While WaitDCD waits a specific time period, the status of carrier can be queried at any time by executing an
loQuery$("CARRIER") function.

WaitKeystrokes Function
See Also Example

Waits a specified period of time for the specified number of keystrokes to be entered by the user.
Syntax WaitKeystrokes (timeout%, count%)

Where: Is:

timeout% The number of seconds to wait for the keystrokes. If timeout% is zero, the function waits
indefinitely for the specified number of keystrokes.

count% The number of keystrokes to wait for.

WaitKeystrokes returns zero if the timeout expires before count% keystrokes are received. Non-zero
indicates the specified number of keystrokes have been entered, with the value being the number of seconds
remaining in the set timeout period.

The WaitKeystrokes function is typically used for logon information.

If the keystrokes are entered on the CRT emulation screen, use the CrtGet$, CrtCol, CrtRow, and
CrtPosition functions.

WaitSilent Statement

See Also Example

The WaitSilent statement is used to wait for inactivity (idle) over the 1/0O connection.

158

Syntax WaitSilent (timeout%)

Where: Is:

timeout% The number of seconds to wait for no activity on the I/O connection.

The WaitSilent statement is typically used to wait for the host to stop sending data after a user action that
triggers a response of unknown length.

WaitStr Function [VCBasic Extension]
See Also Example

Waits a specified period of time for one or more specified strings in the data stream passed to the
emulation module.

Syntax WaitStr (timeout%, text1$ [, text2$, text3$, ... , text16$])

Where: Is:

timeout% The number of seconds to wait for any of the specified strings to appear in the emulation
data stream. If timeout% is zero, the function waits indefinitely.

text n$ A string to search for in the emulation data stream.

WaitStr returns zero if the timeout expires before any of the specified strings are received. Non-zero
indicates the specific text n$ that has been matched in the emulation data stream. The value is 1 for text1$, 2
for text2$, up to 16 for text16$.

The data stream passed to the emulation module is searched for strings matching those specified in the
function call. Up to 16 search strings can be specified. For multiple search strings, WaitStr terminates on the
first match. The function terminates on a match or when the timeout period expires, whichever comes first.

Note: The WaitStr function evaluates the raw data stream that is passed to the emulation module. Some
hosts or host applications may vary the order of screen writes, or send cursor positioning sequences instead of
blanks between data items being displayed. In such instances, it may be easier to use the WaitSilent and
CrtSearch functions.

WaitTime Function
See Also Example

The WaitTime function waits for a specific period of time to pass.

159

Syntax WaitTime (timeout)

Where: Is:

timeout The time of the wait period in 1/100s of a second.

The return value of WaitTime is always zero. This call should be treated as a statement; the function call is
retained for backward compatibility.

Terminology
Forms and Controls

Forms and controls are the basic building blocks of VVCBasic

A form is the canvas that you use to construct a dialog box. Here is the blank form that comes up when you
first start the VCBasic Editor:

B L Brsic] [_ [

Controls are the objects added to a form that allow interaction with the form. Examples of controls are push
buttons, edit fields, check boxes, and scroll bars. The Control Palette (also called the Toolbox) contains the
controls you can add to a form. Click on the default Control Palette below to see the meaning of each control

icon.

]

a—

LE

[

] g 1) i =

160

Properties, Events and Methods
Each object is defined by its properties, the events it acts upon, and the methods it uses.

Properties are the attributes of a particular control. All properties of a control are listed, and can be edited, in
the control's Property Sheet. A portion of an example Property Sheet, in this case for our blank form, is shown
below:

I[fulm1] - WForm j
BackCalar b:H S000000F % e
BorderStyle 2 - Sizeable
Caption
Curgor [Drefault)

CrragCursor [Drefault)

Dragkdode 0 - kanual

Enable 1-Tre

FormHeight 102

Formiaidth 272

HazCaption 1-Tre

Height 129

HelpFileM ame

HelplD 0

|zon [hione] —
Left 203

i axButton 1-Tre

Menutisible 1-Tre

MinE utton 1-Tre

M ame form1

Picture [hone b

These properties are for our blank form. If you would like to view the Property Sheet, select View:Properties
from the menu. Note: Not all controls have the same properties. Properties in the Property Sheet will change
based on the selected control.

Events are just that: things that happen, and that the control may or may not act upon. Examples of events are
a control gaining focus, clicking the mouse, pressing a key or editing text. The events that apply to a selected
object are listed in the Script Editor (described later).

Methods are actions the control can use to perform tasks. Examples of methods are determining the selected
item in a list, changing the cursor over a control, or refreshing a control's contents. Some methods are actions
themselves, while others change certain properties of a control, affecting the look or operation of the control.
The methods that apply to a control are listed in the main online help; a method is applied by writing "script"
code in the Script Editor.

Scripts

161

The Script Editor is used to write scripts, which are self-contained subroutines of VCBasic code. Scripts are
tied to an object and an event. For example, you would write a single script for what should happen when the
OK button on a dialog is clicked. The Script Editor for our blank form looks like this:

Al Script Fditor I =]
Object: | form1 j Event: | ;otFocus j
Sub GotFocusz [
B
=
|l Iz
Back to the Tutorial.

Your First Macro
In this tutorial, you will learn:

. How to add controls to a form to create a user interface.
. How to define the properties of controls.
. How to use the script editor to create the macro code.

What the Macro Will Do

For the purposes of this tutorial, we will create a macro that:

. Prompts the user for a Group Name, User Name and Password.

. Logs on to a TACL session.

. Starts the Tandem ViewSys application.

. Reads the display to determine the length of the CPU 00 CPU Busy bargraph, then display it as a
percentage.

. Terminates ViewSys, logs off the session and ends the macro.

Writing the Macro

Step 1. Creating the user interface.
Step 2. Setting the controls' properties.
Step 3. Writing the scripts.

Step 4. Running the macro.

162

Step 1. Creating the user interface.

1. In OutsideView, go to the Macro menu and select the Macro Editor option. This starts the
Visual CommBasic development environment. The macro editor displays, with a blank form (titled
"VCBasicl") and the Control Palette visible.

A

2. Click the Label control in the Control Palette, then click near the upper left of the
blank form to drop a label control. Repeat this until you have five label controls, identified as
"label1" through "label5".

3. Click the Edit control in the Control Palette, then click to the right of "label1" to drop
an edit control. Repeat this until you have three edit controls, identified as "editl", "edit2" and
"edit3", to the right of the first three label controls.

4, Click the | Push Button control in the Control Palette, then click below the other
controls to drop a pushbutton control. Repeat this to add a second button to the right of the first. The
buttons are identified as "button1" and "button2".

5. Position the controls to the left and top of the form, then resize the form to correspond to
the controls. If you wish, you can use the alignment buttons in the toolbar to align selected controls.

=
For example, hold down the Control key and click on the the first three labels, then click the
Toolbar button to align the labels to the left; you can then drag the aligned labels to the desired
location on the form. Your form should now look similar to this:

=\ (T Hssic M=l B3
labell Iedit‘l
label2 Iedit2
label3 Iedit3
label4 label5
buttonl | button2
6. Save your work so far by selecing File:Save from the menu. For the filename, type "CPU

Busy". Click Save. You'll see the filename replace "VCBasicl" in the form's title bar.

Step 2. Setting the control's properties.

163

Step 2. Setting the controls' properties.

This step sets the properties of the controls added in the previous step.

One of the properties we will be setting is the control's Name. While the automatically-assigned
names of controls can be used, it is good programming practice to use more descriptive hames,
which makes the script code easier to write and understand.

1. Select View:Properties from the menu. The Property Sheet displays, which is used to set
the properties of the controls. The drop-down list at the top of the Property Sheet allows you to
select each control individually, as shown in this example:

B Fapern Sheet _)

1l 0 -
[labell] - ¥wLabel —
[label?] - " w/Label

[label3] - “wilabel i
[label4] - " »/Label

[labels] - “ »/Label -
Draghdode 1 - fanual I
Enable 1-Tue

FormHeight 191

Formafidth 255

HazCaption 1-Tre

Height 218

HelpFileM ame

Helpl D I -

The name of the control is shown at left in bold, while the control type is shown at the right.

2. Select form1. Click on the Caption property and type "CPU Busy" (without the quotes) into the edit
field and press Enter. You'll see the title of the form change as you enter the caption.

3. Select labell. Naotice that the red rectangles indicate the active selection. In the Name property,
select the "labell" text, change it to "IbIGrpName™ and press Enter. In the Caption property, select the
existing "labell" text, change it to "Group Name" and press Enter. You'll see the text on the form change to
reflect the new caption.

4, Select label2. Change the Name to "IblUsrName". Change the Caption to "User Name".
5. Select label3. Change the Name to "IblPassword". Change the Caption to "Password".
6. Select label4. Change the Name to "IbIBusyCaption". Change the Caption to "CPU Busy". Change

the Visible property to "0 - False" by clicking the drop-down arrow and selecting the False entry.

164

7. Select label5. Change the Name to "IbICPUBuUsy". Select the Caption and press the Delete key to
blank out the label so it has no caption. Change the Visible property to "0 - False". (This is the field where the
percentage of "CPU Busy" is displayed. Don't worry that nothing is visible now, the macro script will
generate the necessary information when it runs.)

8. Select editl. Change the Name to "txtGrpName". Select the Text property and delete the "edit1" text
so that the edit field is blank by default.

9. Select edit2. Change the Name to "txtUsrName". Select the Text property and delete the "edit2" text
so that the edit field is blank by default.

10. Select edit3. Change the Name to "txtPassword". Select the Text property and delete the "edit3" text
so that the edit field is blank by default. In the PasswordChar property, type an asterisk (*) to use as the
password character. This causes any text typed into Password field to display as asterisks, rather than the
actual text, providing password security.

11. Select buttonl. Change the Name to "cmdLogon". Change the Caption to "&Logon" (the
ampersand makes the following character, in this case the "L", the keyboard-accessible accelerator). Change
the Default property to "1 - True", making this the default button on the form.

12. Select button2. Change the Name to "cmdEXxit". Change the Caption to "E&xit".

13. Save your work so far by pressing Ctrl+S. Your form should now look something like this:

= L Husy [_ (O]

Group Hame I

User Hame I

Password I

CPU Busy

Logon | E xit

Step 3. Writing the scripts.

165

Step 3. Writing the scripts.

This step adds the scripts that control the macro’s operation.

1. Select View:Script Editor from the menu. The Script Editor displays, similar to the
following (which has been sized down):

Al Script Fditor I =]

Object: | om j Event: | GotFocus j

Sub GotFocusz [
B
=
|| Iz

The two drop-down lists at the top of the Script Editor allow you to select any Object (such as
controls on your form) or Event (such as clicking a button). The edit area beneath is where you enter
the macro script for the selected Object and Event.

2. In the Event list, select Common. This is a special event that is "common" to all scripts in
your macro. In the edit area, type

Option Explicit

This command forces explicit declaration of all variables used in the macro. Although it is not
necessary, explicit variable declarations help avoid some very troublesome errors in larger macros.

3. In the Object list, select "cmdLogon", which is the name of the Logon button. The Event
list automatically changes to "Click". Now we will add the script that executes when the user clicks
the Logon button. Type the following code, or copy it from this Help window and paste it into the
Script Editor's edit area:

dim retint as integer

"Logon to TACL

emit "Logon " & txtGrpName.text & "." & txtUsrName.text
' Wait for the "Password:" prompt from TACL

retInt = WaitStr(5, "Password:")

emit txtPassword.text

" Wait for TACL prompt
retInt= WaitStr(5, ">"
' Start ViewSys

emit "viewsys"

" Show the CPU Busy controls
IbIBusyCaption.visible = TRUE
IbICPUBUSsY.visible = TRUE

' Disable the logon controls
txtGrpName.enable = FALSE

166

txtUsrName.enable = FALSE
txtPassword.enable = FALSE
cmdLogon.enable = FALSE

" Initialize timer

me.timer = 1000

This script uses the values entered by the user for Group Name, User Name and Password to logon
to a TACL session. Note that the WaitStr commands are used to wait for the proper responses from
the host. After the TACL prompt is detected, the script starts a ViewSys process. The edit controls
and Logon button are also disabled to prevent the user changing any information and sending
invalid data to the now-logged-in session.

4, In the Object list, select "form1". In the Event list, select "Timer". The Timer event is used
for macro processes that you want to execute multiple times. In this case, we'll use the Timer event
to periodically check the "cpu busy" item for the CPU 00 processor from ViewSys. Type the
following code, or copy it from this Help window and paste it into the Script Editor's edit area:

dim intCol as integer

const CrtAttrReverse = 2
const BarLength = 28 ' Maximum length of CPU Busy bar
' Find the length of the CPU busy bar by checking
' for the reverse character attribute
inCol =3
do while CrtAttr(6, intCol) AND CrtAttrReverse
intCol = intCol + 1
loop
' Format the value and display
IbICPUBUSsY.caption = Format$(cSng(intCol - 3) / BarLength, "percent")
" Reinitialize the timer for one-second intervals
me.timer = 1000

This script determines the length of the CPU 00 Busy bargraph by checking the character attribute in
the bargraph row (row 6, starting in column 3). The character attribute is retrieved with the CrtAttr
command, and is compared with the reverse attribute value to determine if the character space is a
reverse video bar character. The percentage of "found" reverse video characters is calculated,
formatted, and displayed in the "IbICPUBusy" control. To repeat this procedure every second, the
timer property for the form ("me" always refers to the form) is reinitialized at the end of the script.

5. In the Object list, select "cmdExit", which is the name of the Exit button. The Event list
automatically changes to "Click". Now we will add the script that executes when the user clicks the
Exit button. Type the following code, or copy it from this Help window and paste it into the Script
Editor's edit area:

dim retStr as string, retint as integer

' Disable timer

me.timer =0

' Stop ViewSys by sending F16

retStr = CrtTrigger("FUNCKEY", "Tandem F16")
" Wait for TACL prompt

retint = WaitStr(5, ">"

" Logoff from TACL

167

emit "logoff"
' Terminate the macro
UnloadForm me

This script is used to close down the ViewSys process, log off the TACL session, and close down
the macro. Note the use of the CrtTrigger command to send the F16 function key (see the online help
of this command for details on specifying the correct function key). Also, "UnloadForm me" is how
you terminate a macro. Since Visual CommBasic is an event-driven language, you must explicitly
terminate execution

6. Save your work so far by pressing Ctrl+S.

Step 4. Running the macro.

Step 4. Running the macro.

Congratulations! The macro is complete and now can be run. But before we start it, keep in mind that Visual
CommBasic macros are bound to the session that is active when they are executed. This applies whether you
are running a macro from OutsideView (Options: Run Macro) or from the VCB Macro Editor. Our tutorial
macro requires that a Tandem session be connected, active, and running TACL but not logged in.

To run your first macro:

1. Click the Run button on the Toolbar. The Macro Editor enters run mode, and executes the
macro (If there are any syntax errors in your script code, the Script Editor displays with the detected
error marked.).

2. Enter your Group Name, User Name and Password in the edit fields. Click the Logon
button and watch the results.

3. If you make any changes to your macro, make sure to save them. To watch the macro
operate the session, close the Macro Editor and select Macro:Run Macro from the OutsideView
menu.

That's the end of our tutorial.

You can continue on to an Alphabetical List of all commands available in Visual CommBasic or a
list of all the commands grouped by their function. You may also go back to the Table of Contents or
to the Visual CommBasic Overview.

Abs Function
See AlsoExample

Returns the absolute value of a number.

Syntax Abs(number)
Where: Is:
number Any valid numeric expression.

The data type of the return value matches the type of the number except for types 8 and 0.

168

If number is a Variant string (vartype 8), the return value will be converted to vartype 5 (Double).
If the absolute value evaluates to vartype 0 (Empty), the return value will be vartype 3 (Long).

AppActivate Statement
See AlsoExample

Activates an application window.

Syntax AppActivate title

Where: Is:

title A string expression for the title-bar name of the application window to activate.

Title must match the name of the window character for character, but comparison is not case-sensitive, e.g.,
"File Manager" is the same as "file manager" or "FILE MANAGER".
If there is more than one window with a name matching title, a window is chosen at random.

AppActivate changes the focus to the specified window but does not change whether the window is
minimized or maximized.

Use AppActivate with the SendKeys statement to send keys to another application.

If you want to open an application that dynamically changes its title bar, such as OutsideView, you must use
the AppClassActivate statement instead.

Asc Function
See AlsoExample

Returns an integer corresponding to the ANSI character code of the first character in the specified string.

Syntax Asc(string$)
where: is:
string$ A string expression of one or more characters.

To obtain the first byte of a string, use AscB.

To change a character code to a character string, use Chr$.

Atn Function
See AlsoExample

Returns the angle (in radians) for the arc tangent of the specified number.

Syntax Atn(number)
where: is:
number Any valid numeric expression.

The Atn function assumes number is the ratio of two sides of a right triangle: the side opposite the angle to
find and the side adjacent to the angle.

The return value is a single-precision value for a ratio expressed as an integer, a currency, or a
single-precision numeric expression.

The return value is a double-precision value for a long, Variant or double-precision numeric expression.

To convert radians to degrees, multiply by (180/PI). The value of Pl is approximately 3.14159.

169

Beep Statement
See AlsoExample

Produces a single tone through the computer speaker.
Syntax Beep
The frequency and duration of the tone depends on the hardware.

Begin Dialog ... End Dialog Statement
See AlsoExampleQverview

Begins and ends a dialog-box declaration.

Syntax Begin Dialog dialogName [x,y,] dx, dy [, caption$] [, .dialogfunction]
" dialog box definition statements

End Dialog

where: is:

dialogName The record name for the dialog box definition.
X,y The coordinates for the upper left corner of the dialog box.
dx , dy The width and height of the dialog box (relative to x and y).
caption$ The title for the dialog box.

.dialogfunction A Basic function to process user actions in the dialog box.

To display the dialog box, you create a dialog record variable with the Dim statement, and then display the
dialog box using the Dialog function or Dialog statement with the variable name as its argument. In the Dim
statement, this variable is defined As dialogName.

The x and y coordinates are relative to the upper left corner of the client area of the parent window. The x
argument is measured in units that are 1/4 the average width of the system font. The y argument is measured
in units 1/8 the height of the system font. For example, to position a dialog box 20 characters in, and 15
characters down from the upper left hand corner, enter 80, 120 as the x , y coordinates. If these arguments are
omitted, the dialog box is centered in the client area of the parent window.

The dx argument is measured in 1/4 system-font character-width units. The dy argument is measured in 1/8
system-font character-width units. For example, to create a dialog box 80 characters wide, and 15 characters
in height, enter 320, 120 for the dx , dy coordinates.

If the caption$ argument is omitted, a standard default caption is used.

The optional .dialogfunction function must be defined (using the Function statement) or declared (using
Dim) before being used in the Begin Dialog statement. Define the dialogfunction with the following three
arguments:

Function dialogfunction% (id$, action% , suppvalue&)
' function body
End Function

id$ The text string that identifies the dialog control that triggered the call to the dialog
function (usually because the user changed this control).

action% An integer from 1 to 5 identifying the reason why the dialog function was called.
suppvalue& Gives more specific information about why the dialog function was called.

170

As with any Basic function, these arguments can have different names. The arguments of the dialog
function can also be Variants. (Click the underlined argument above to see more about it.)

In most cases, the return value of dialogfunction is ignored. The exceptions are a return value of 2 or 5 for
action%. If the user clicks the OK button, Cancel button, or a command button (as indicated by an action%
return value of 2 and the corresponding id$ for the button clicked), and the dialog function returns a non-zero
value, the dialog box will not be closed.

Unless the Begin Dialog statement is followed by at least one other dialog-box definition statement and the
End Dialog statement, an error will result. The definition statements must include an OKButton,
CancelButton or Button statement. If this statement is left out, there will be no way to close the dialog box,
and the procedure will be unable to continue executing.

Button Statement
See AlsoExample

Defines a custom push button.

Syntax A Button x,y, dx, dy, text$ [, .id]
Syntax B PushButton x, y, dx, dy, text$ [, .id]
where: is:
X,y The position of the button relative to the upper left corner of the dialog box.
dx, dy The width and height of the button.
text$ The name of the push button. If the width of this string is greater than dx, trailing
characters are truncated.
.id An optlional identifier used by the dialog statements that act on this
control.

A dy value of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this statement in conjunction with the
ButtonGroup statement. The two forms of the statement (Button and PushButton) are equivalent.

Use the Button statement only between a Begin Dialog and an End Dialog statement.

ButtonGroup Statement
See AlsoExample

Begins the definition of a group of custom buttons for a dialog box.

Syntax ButtonGroup .field
where: is:
field The field to contain the user's custom button selection.

If ButtonGroup is used, it must appear before any PushButton (or Button) statement that creates a custom
button (one other than OK or Cancel). Only one ButtonGroup statement is allowed within a dialog box
definition.

Use the ButtonGroup statement only between a Begin Dialog and an End Dialog statement.

Call Statement
See AlsoExample

Transfers control to a subprogram or function.

171

Syntax A Call subprogram-name [(argumentlist)]

Syntax B subprogram-name argumentlist
where: is:
subprogram-name The name of the subroutine or function to call.

argumentlist The arguments for the subroutine or function (if any).

Use the Call statement to call a subprogram or function written in Basic or to call C procedures ina DLL.
These C procedures must be described in a Declare statement or be implicit in the application.

If a procedure accepts named arguments, you can use the names to specify the argument and its
value. Order is not important. For example, if a procedure is defined as follows:

Sub mysub(aa, bb, optional cc, optional dd)
the following calls to this procedure are all equivalent;

call mysub(Z, 2, , 4)

mysub aa :=1,bb:=2,dd :=4

call mysub(aa := 1, dd:=4, bb := 2)
mysub 1, 2, dd:=4

Note that the syntax for named arguments is as follows:
argname :=argvalue

where argname is the name for the argument as supplied in the Sub or Function statement and argvalue is
the value to assign to the argument when you call it. The advantage to using named arguments is that you do
not have to remember the order specified in the procedure's original definition, and if the procedure takes
optional arguments, you do not need to include commas (,) for arguments that you leave out.

The procedures that use named arguments include:

1. All functions defined with the Function statement.

2 All subprograms defined with the Sub statement.

3. All procedures declared with Declare statement.

1 Many built-in functions and statements (such as InputBox).

1. Some externally registered DLL functions and methods.

Arguments are passed by reference to procedures written in Basic. If you pass a variable to a procedure that
modifies its corresponding formal parameter, and you do not want to have your variable modified, enclose
the variable in parentheses in the Call statement. This will tell VCBasic to pass a copy of the variable. Note
that this will be less efficient, and should not be done unless necessary.

When a variable is passed to a procedure that expects its argument by reference, the variable must
match the exact type of the formal parameter of the function. (This restriction does not apply to
expressions or Variants.)

When calling an external DLL procedure, arguments can be passed by value rather than by reference. This is
specified either in the Declare statement, the Call itself, or both, using the ByVal keyword. If ByVal is

172

specified in the declaration, then the ByVal keyword is optional in the call. If present, it must precede the
value. If ByVal was not specified in the declaration, it is illegal in the call unless the data type specified in the
declaration was Any.

CancelButton Statement
See AlsoExample

Sets the position and size of a Cancel button in a dialog box.

Syntax CancelButton x,y, dx,dy[,.id]

where: is:

X,y The position of the Cancel button relative to the upper left corner of the dialog box.
dx, dy The width and height of the button.

.id An optional identifier for the button.

A dy value of 14 can usually accommodate text in the system font.
.Id is used by the dialog statements that act on this control.

If you use the Dialog statement to display the dialog box and the user clicks Cancel, the box is removed from
the screen and an Error 102 is triggered.

If you use the Dialog function to display the dialog box and the user clicks Cancel, the function will return 0
and no error occurs.

Use the CancelButton statement only between a Begin Dialog and an End Dialog statement.

Caption Statement
See AlsoExample

Defines the text to be used as the title of a dialog box.

Syntax Caption text$

where: is:

text$ A string expression containing the title of the dialog box.

Use the Caption statement only between a Begin Dialog and an End Dialog statement.
If no Caption statement is specified for the dialog box, a default caption is used.

ChDir Statement
See AlsoExample

Changes the default directory for the specified drive.

Syntax ChDir path$

173

where: is:

path$ A string expression identifying the new default directory.

The syntax for path$ is: [drive:] [\] directory [\directory]
If the drive argument is omitted, ChDir changes the default directory on the current drive.
The ChDir statement does not change the default drive. To change the default drive, use ChDrive.

ChDrive Statement
See AlsoExample

Changes the default drive.

Syntax ChDrive drive$

where: is:

drive$ A string expression designating the new default drive.

This drive must exist and must be within the range specified by the LASTDRIVE statement in the
CONFIG.SYS file.

If a null argument (" ") is supplied, the default drive remains the same.

If the drive$ argument is a string, ChDrive uses the first letter only.

If the drive$ argument is omitted, an error message is produced.

To change the current directory on a drive, use ChDir.

CheckBox Statement
See AlsoExample

Creates a check box control in a dialog box.

Syntax CheckBox x,y, dx, dy, text$, .field

where: is:

X,y The upper left corner coordinates of the check box, relative to the upper left corner of the dialog box.

dx The combined width of the check box and the text$ field.
dy The height of text$.
text$ The title shown to the right of the check box.

field The name of the dialog-record field that will hold the current check box setting (O=unchecked,
-1=grey, 1=checked).

174

The x argument is measured in 1/4 system-font character-width units. The y argument is measured in 1/8
system-font character-height units. (See Begin Dialog for more information.)

Because proportional spacing is used, the dx argument width will vary with the characters used. To
approximate the width, multiply the number of characters in the text$ field (including blanks and
punctuation) by 4 and add 12 for the checkbox.

If the width of the text$ field is greater than dx, trailing characters will be truncated. If you want to include
underlined characters so that the check box selection can be made from the keyboard, precede the character to
be underlined with an ampersand (&).

A dy value of 12 is standard, and should cover typical default fonts. If larger fonts are used, the value should
be increased. As the dy number grows, the checkbox and the accompanying text will move down within the
dialog box.

V/CBasic treats any other value of .field which isn't-1, 0, or 1 as if the value was 1. The .field argument is also
used by the dialog statements that act on this control.

Use the CheckBox statement only between a Begin Dialog and an End Dialog statement.

Class List

Following is a list of classes that can be used in a Dim statement, a Typeof expression, or with the New
operator:

Object Provides access to OLE2 automation.

Clipboard
Example

The Windows Clipboard can be accessed directly in your program to enable you to get text from and put text
into other applications that support the Clipboard.

Syntax Clipboard.Clear
Clipboard.GetText()
Clipboard.SetText string$
Clipboard.GetFormat()

where: is:

string$ A string or string expression containing the text to send to the Clipboard.

The Clipboard methods supported are as follows:

Me What it does:
th
d:

Cle Clears the contents of the Clipboard.

175

ar

Get Returns a text string from the Clipboard.
Te
xt

Set Puts a text string to the Clipboard.
Te
xt

Get Returns TRUE (non-0) if the format of the item on
For the Clipboard is text. Otherwise, returns FALSE
mat (0).

Note: Data on the Clipboard is lost when another set of data of the same format is placed on the Clipboard
(either through code or a menu command).

CLng Function
See AlsoExample

Converts an expression to the data type Long by rounding.

Syntax CLng(expression)

where: is:

expression Any expression that can evaluate to a number.

After rounding, the resulting number must be within the range of -2,147,483,648 to 2,147,483,647,
Or an error occurs.

Strings that cannot be converted to a long result in a "Type Mismatch" error.
Variants containing null result in an "lllegal Use of Null" error.

Close Statement
See AlsoExample

Closes a file, concluding input/output to that file.

Syntax Close [[#] filenumber% [, [#] filenumber% ... 1]

where: is:

You may use this symbol or not. It has no effect.

filenumber% An integer expression identifying the file to close.

Filenumber% is the number assigned to the file in the Open statement. If this argument is omitted, all open
files are closed.

176

Once a Close statement is executed, the association of a file with filenumber% is ended, and the file can be
reopened with the same or a different file number.

When the Close statement is used, the final output buffer is written to the operating system buffer for that file.
Close frees all buffer space associated with the closed file. Use the Reset statement so that the operating
system will flush its buffers to disk.

Cos Function
See AlsoExample

Returns the cosine of an angle.

Syntax Cos(number)

where: is:

number An angle in radians.

The return value will be between -1 and 1.

The return value is a single-precision number if the angle has a data type Integer, Currency, or is a
single-precision value.

The return value will be a double precision value if the angle has a data type Long, Variant or is a
double-precision value.

The angle can be either positive or negative. To convert degrees to radians, multiply by (P1/180).
The value of Pl is approximately 3.14159.

CSng Function
See AlsoExample

Converts an expression to the data type Single (single-precision floating point.)

Syntax CSng(expression)

where: is:

expression Any expression that can evaluate to a number.

The expression must have a value within the range allowed for the Single data type, or an error occurs.

Strings that cannot be converted to an integer result in a "Type Mismatch" error.
Variants containing null result in an "lllegal Use of Null" error.

CStr Function
See AlsoExample

Converts an expression to the data type String.

Syntax CStr(expression)

177

where: is:

expression Any expression that can evaluate to a number.

The CStr statement accepts any type of expression:

If expression is: CStr returns:

Boolean A String containing "True" or "False".

Date A String containing a date.

Empty A zero-length String (").

Error A String containing "Error", followed by the error number.
Null A run-time error.

Other Numeric A String containing the number.

CurDir Function
See AlsoExample

Returns the default directory (and drive) for the specified drive.

Syntax CurDir[$] [(drive$)]

where: is:

drive$ A string expression containing the drive to search.

The drive must exist, and must be within the range specified in the LASTDRIVE statement of the
CONFIG.SYS file. If a null argument (" ") is supplied, or if no drive$ is indicated, the path for the default
drive is returned.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If omitted, the
function will return a Variant of vartype 8 (string).

To change the current drive, use ChDrive. To change the current directory, use ChDir.

Date Function
See AlsoExample

Returns a string representing the current date.
Syntax Date[$]
The Date function returns a ten character string.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If omitted, the
function will return a Variant of vartype 8 (string).

DateSerial Function
See AlsoExample

Returns a date value for year, month, and day specified.

178

Syntax DateSerial(year% , month% , day%)

where: is:

year% A year between 100 and 9999, or a numeric expression.
month% A month between 1 and 12, or a numeric expression.
day% A day between 1 and 31, or a numeric expression.

The DateSerial function returns a VVariant of vartype 7 (date) that represents a date from January 1, 100
through December 31, 9999. A value of zero represents December 30, 1899. Times are represented as
fractional days.

A numeric expression can be used for any of the arguments to specify a relative date: a number of
days, months, or years before or after a certain date.

DateValue Function
See AlsoExample

Returns a date value for the string specified.

Syntax DateValue(date$)

where: is:

date$ A string representing a valid date.

The DateValue function returns a Variant of vartype 7 (date) that represents a date from January 1, 100
through December 31, 9999. A value of zero represents December 30, 1899. Times are represented as
fractional days.

DateValue accepts several different string representations for a date. It makes use of the operating system's
international settings for resolving purely numeric dates.

Day Function
See AlsoExample

Returns the day of the month (1-31) of a date-time value.

Syntax Day/(date)

where: is:

date Any expression that can evaluate to a date.

179

Day attempts to convert the input value of date to a date value. If it cannot convert, a run-time error occurs.
The return value is a Variant of vartype 2 (integer) unless the value of date is null
If the value of date is null, a Variant of vartype 1 (null) is returned.

DDEAppReturnCode Function
See Also Example

Returns a code received from an application on an open dynamic data exchange (DDE) channel.

Syntax DDEAppReturnCode()

To open a DDE channel, use DDElInitiate. Use DDEAppReturnCode to check for error return codes from
the server application after using DDEExecute, DDEPoke or DDERequest.

DDEExecute Statement
See AlsoExample

Sends one or more commands to an application via a dynamic-data exchange (DDE) channel.

Syntax DDEExecute channel% , cmd$

where: is:

channel% An integer or expression for the channel number of the DDE conversation as returned by
DDElnitiate.

cmd$ One or more commands recognized by the application.

If channel doesn't correspond to an open channel, an error occurs.

You can also use the format described under SendKeys to send specific key sequences. If the server
application cannot perform the specified command, an error occurs.

In many applications that support DDE, cmd$ can be one or more statements or functions in the application's
macro language. Note that some applications require that each command received through a DDE channel be
enclosed in brackets and quotation marks.

You can use a single DDEEXxecute instruction to send more than one command to an application.

Many commands require arguments in the form of strings enclosed in quotation marks. Because
quotation marks indicate the beginning and end of a string in VCBasic, you must use Chr$(34) to
include a quotation mark in a command string. For example, the following instruction tells
Microsoft Excel to open MYFILE.XLS:

DDEExecute channelno, "[OPEN(" + Chr$(34) + "MYFILE.XLS" + Chr$(34) + ")]"

DDERequest Function
See AlsoExample

Returns data from an application through an open dynamic data exchange (DDE) channel.

180

Syntax DDERequest[$] (channel%, item$)

where: is:

channel% An integer or expression for the open DDE channel number.

item$ Astring or expression for the name of an item in the currently opened topic to get information about.

If channel% doesn't correspond to an open channel, an error occurs.
If the server application doesn't recognize item$, an error occurs.
If DDERequest is unsuccessful, it returns an empty string ("*").

When you open a channel to an application using DDEInitiate, you also specify a topic, such as a filename,
to communicate with. The item$ is the part of the topic whose contents you are requesting.

DDERequest returns data as a text string. Data in any other format cannot be transferred, nor can graphics.

Many applications that support DDE recognize a topic named System. Three standard items in the System
topic are described in the following table:

Item: Returns:

Sysltems A list of all items in the System topic
Topics A list of available topics
Formats A list of all the Clipboard formats supported

Declare Statement
See AlsoExample

Declares a procedure in a module or dynamic link library (DLL).

Syntax A Declare Sub name [libSpecification] [(parameter [Astype])]

Syntax B Declare Function name [libSpecification] [(parameter [As type])][As functype]
where: is:

name The subprogram or function procedure to declare.

libSpecification The location of the procedure (module or DLL).
parameter The arguments to pass to the procedure, separated by commas.
type The type for the arguments.

functype The type of the return value for a function procedure.

The Declare statement has two uses: forward declaration of a procedure whose definition is to be found later
in this module, and declaration of a procedure that is to be found in an external Windows DLL or external
VCBasic module.

181

A Sub procedure does not return a value. A Function procedure returns a value, and can be used in an
expression. To specify the data type for the return value of a function, end the Function name with a type
character or use the As functype clause shown above. If no type is provided, the function defaults to data type
Variant.

If the libSpecification is of the format:
BasicLib libName [Alias "aliasname]

the procedure is in another VCBasic module named libName. The Alias keyword specifies that the procedure
in libName is called aliasname. The other module will be loaded on demand whenever the procedure is
called. VCBasic will not automatically unload modules that are loaded in this fashion. VCBasic will detect
errors of mis-declaration.

If the libSpecification is of the format:
Lib libName [Alias [*"]ordinal['"]] or
Lib libName [Alias "aliasname"]

the procedure is in a Dynamic Link Library (DLL) named libName. The ordinal argument specifies the
ordinal number of the procedure within the external DLL. Alternatively, aliasname specifies the name of the
procedure within the external DLL. If neither ordinal nor aliasname is specified, the DLL function is
accessed by name. It is recommended that the ordinal be used whenever possible, since accessing functions
by name might cause the module to load more slowly.

A forward declaration is needed only when a procedure in the current module is referenced before it is
defined. In this case, the BasicLib, Lib and Alias clauses are not used.

The data type of a parameter can be specified by using a type character or by using the As clause. Record
parameters are declared by using an As clause and a type that has previously been defined using the Type
statement. Array parameters are indicated by using empty parentheses after the parameter: array dimensions
are not specified in the Declare statement.

External DLL procedures are called with the PASCAL calling convention (the actual arguments are pushed
on the stack from left to right). By default, the actual arguments are passed by Far reference. For external
DLL procedures, there are two additional keywords, ByVal and Any, that can be used in the parameter list.

When ByVal is used, it must be specified before the parameter it modifies. When applied to numeric data
types, ByVal indicates that the parameter is passed by value, not by reference. When applied to string
parameters, ByVal indicates that the string is passed by Far pointer to the string data. By default, strings are
passed by Far pointer to a string descriptor.

Any can be used as a type specification, and permits a call to the procedure to pass a value of any datatype.

When Any is used, type checking on the actual argument used in calls to the procedure is disabled (although
other arguments not declared as type Any are fully type-safe).

The actual argument is passed by Far reference, unless ByVal is specified, in which case the actual value is

placed on the stack (or a pointer to the string in the case of string data). ByVal can also be used in the call. It
is the external DLL procedure's responsibility to determine the type and size of the passed-in value.

When an empty string (") is passed ByVal to an external procedure, the external procedure will receive a
NULL pointer. If you want to send a valid pointer to an empty string, use Chr$(0).

Deftype Statement
See AlsoExample

Specifies the default data type for one or more variables.

182

Syntax DefCur varTypeLetters
DefInt varTypeLetters

DeflLng varTypeL etters

DefSng varTypeL etters

DefDbl varTypeLetters

DefStr varTypelLetters

DefVar varTypeLetters

where: is:

varTypeLetters A first letter of the variable name to use.

VarTypeLetters can be a single letter, a comma-separated list of letters, or a range of letters. For example, a-d
indicates the letters a, b, ¢ and d.

The case of the letters is not important, even in a letter range.

The letter range a-z is treated as a special case: it denotes all alpha characters, including the
international characters.

The Deftype statement affects only the module in which it is specified. It must precede any variable definition
within the module.

Variables defined using the Global or Dim can override the Deftype statement by using an As clause or a type
character.

Dialog Function
See AlsoExample Overview

Displays a dialog box and returns a number for the button selected (-1= OK, 0=Cancel).

Syntax Dialog (recordName)

where: is:

recordName A variable name declared as a dialog box record.

If the dialog box contains additional command buttons (for example, Help), the Dialog function returns a
number greater than 0. 1 corresponds to the first command button, 2 to the second, and so on.

The dialog box recordName must have been declared using the Dim statement with the As parameter
followed by a dialog box definition name. This name comes from the name argument used in the Begin
Dialog statement.

To trap a user's selections within a dialog box, you must create a function and specify it as the last argument
to the Begin Dialog statement. See Begin Dialog for more information.

The Dialog function does not return until the dialog box is closed.

Dialog Statement
See AlsoExample Overview

Displays a dialog box.

183

Syntax Dialog recordName

where: is:

recordName A variable name declared as a dialog box record.

The dialog box recordName must have been declared using the Dim statement with the As parameter
followed by a dialog box definition name. This name comes from the name argument used in the Begin
Dialog statement.

If the user exits the dialog box by pushing the Cancel button, the run-time error 102 is triggered, which can be
trapped using On Error.

To trap a user's selections within a dialog box, you must create a function and specify it as the last argument
to the Begin Dialog statement. See Begin Dialog for more information.

The Dialog statement does not return until the dialog box is closed.

Dim Statement
See AlsoExampleOverview

Declares variables for use in a Basic program.

Syntax Dim [Shared] variableName [As [New] type] [,variableName [As [New] type]] ...

where: is:

variableName The name of the variable to declare.

type The data type of the variable.

VariableName must begin with a letter and contain only letters, numbers and underscores. A name can also
be delimited by brackets, and any character can be used inside the brackets, except for other brackets.

Dim my_1st variable As String
Dim [one long and strange! variable name] As String

If the As clause is not used, the type of the variable can be specified by using a type character as a suffix to
variableName. The two different type-specification methods can be intermixed in a single Dim statement
(although not on the same variable).

Basic is a strongly typed language: all variables must be given a data type or they will be automatically
assigned the data type Variant. The available data types are:

Arrays
Numbers
Objects
Records

Strings

184

Variants

Variables can be shared across modules. A variable declared inside a procedure has scope Local to that
procedure. A variable declared outside a procedure has scope Local to the module. If you declare a variable
with the same name as a module variable, the module variable is not accessible. See the Global statement for
details.

The Shared keyword is included for backward compatibility with older versions of Basic. It is not allowed in
Dim statements inside a procedure. It has no effect.

It is considered good programming practice to declare all variables. To force all variables to be explicitly
declared use the Option Explicit statement. It is also recommended that you place all procedure-level Dim
statements at the beginning of the procedure.

Regardless of which mechanism you use to declare a variable, you can choose to use or omit the
type character when referring to the variable in the rest of your program. The type suffix is not
considered part of the variable name.

DlgControlID Function
See AlsoExample Overview

Returns the numeric ID of a dialog box control with the specified 1d$ in the active dialog box.

Syntax DlgControlID (1d$)

where: is:

1d$ The string ID for a dialog control.

The DIgControlID function translates a string 1d$ into a numeric ID.
This function can only be used from within a dialog box function.

The value of the numeric identifier is based on the position of the dialog box control with the dialog;
it will be 0 (zero) for the first control, 1 (one) for the second control, and so on.

Given the following example, the statement DIgControlID("doGo") will return the value 1.
Begin Dialog newdlg 200, 200

PushButton 40, 50, 80, 20, "&Stop", .doStop

PushButton 40, 80, 80, 20, "&Go", .doGo
End Dialog

The advantage of using a dialog box control's numeric ID is that it is more efficient, and numeric
values can sometimes be more easily manipulated.

Rearranging the order of a control within a dialog box will change its numeric ID. For example, if a
PushButton control originally had a numeric value of 1, and a textbox control is added before it, the
PushButton control's new numeric value will be 2.

The string IDs come from the last argument in the dialog definition statement that created the dialog control,
such as the TextBox or ComboBox statements. The string ID does not include the period (.) and is
case-sensitive.

185

Use DIgControlID only while a dialog box is running. See the Begin Dialog statement for more information.

DlgEnable Function
See AlsoExample Overview

Returns the enable state for the specified dialog control (-1=enabled, 0=disabled).

Syntax DIgEnable (1d)

where: is:

Id The control ID for the dialog control.

If a dialog box control is enabled, it is accessible to the user. You might want to disable a control if its use
depends on the selection of other controls.

Use the DIgControlID function to find the numeric ID for a dialog control, based on its string identifier.

Use DIgEnable only while a dialog box is running. See the Begin Dialog statement for more information.

DlgEnable Statement
See AlsoExample Overview

Enables, disables, or toggles the state of the specified dialog control.

Syntax DlgEnable Id [, mode]

where: is:

Id The control ID for the dialog control to change.
mode An integer representing the enable state (1=enable, O=disable)

If mode is omitted, the DIgEnable toggles the state of the dialog control specified by Id. If a dialog
box control is enabled, it is accessible to the user. You might want to disable a control if its use depends on
the selection of other controls.

Use the DIgControlID function to find the numeric ID for a dialog control, based on its string identifier. The
string IDs come from the last argument in the dialog definition statement that created the dialog control, such
as the TextBox or ComboBox statements.

Use DIgEnable only while a dialog box is running. See the Begin Dialog statement for more information.

DIgEnd Statement
See AlsoExample Overview

Closes the active dialog box.

Syntax DIgEnd exitCode

186

where: is:

exitCode The return value after closing the dialog box (-1=OK, 0=Cancel).

ExitCode contains a return value only if the dialog box was displayed using the Dialog function. That is, if
you used the Dialog statement, exitCode is ignored.

If the dialog box contains additional command buttons (for example, Help), the Dialog function returns a
number greater than 0. 1 corresponds to the first command button, 2 to the second, and so on.

Use DIgEnd only while a dialog box is running. See the Begin Dialog statement for more information.

DlgFocus Function
See AlsoExample Overview

Returns the control ID of the dialog control having the input focus.

Syntax DlIgFocus[$]()

A control has focus when it is active and responds to keyboard input.

Use DIgFocus only while a dialog box is running. See the Begin Dialog statement for more information.

DlgFocus Statement
See AlsoExample Overview

Sets the focus for the specified dialog control.

Syntax DlgFocus Id

where: is:

Id The control ID for the dialog control to make active.

Use the DIgControlID function to find the numeric 1D for a dialog control, based on its string
identifier. The string IDs come from the last argument in the dialog definition statement that created
the dialog control, such as the TextBox or ComboBox statements.

Use DIgFocus only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgListBoxArray Function
See Also Example Overview

Returns the number of elements in a list or combo box.

Syntax DlgListBoxArray (Id[, Array$])

where: is:

187

Id The control ID for the list or combo box.

Array$ The entries in the list box or combo box returned.

If array$ is omitted, the function returns the number of entries in the specified dialog control.

If the Array$ argument is used, it fills the array with the entries of the list box or the combo box.
Array$ is a one-dimensional array of dynamic strings. If array$ is dynamic, its size is changed to
match the number of strings in the list or combo box. If array$ is not dynamic and it is too small, an
error occurs.

Use the DIgControlID function to find the numeric 1D for a dialog control, based on its string
identifier. The string IDs come from the last argument in the dialog definition statement that created
the dialog control, such as the TextBox or ComboBox statements.

Use DlgListBoxArray only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgListBoxArray Statement
See Also Example Overview

Fills a list or combo box identified by Id with the strings from the array.
Syntax DlgListBoxArray Id, Array$

where: is:

Id The control ID for the list or combo box.
Array$ The entries for the list box or combo box.

Array$ has to be a one-dimensional array of dynamic strings. One entry appears in the list
box for each element of the array. If the number of strings changes depending on other selections
made in the dialog box, you should use a dynamic array and ReDim the size of the array whenever it
changes.

Use DlgListBoxArray only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgSetPicture Statement
See Also Example Overview

Changes the picture in a picture dialog control for the current dialog box.

Syntax DlgSetPicture Id, filename$, type

where: is:

Id The control ID for the picture dialog control.

filename$ The name of the bitmap file (BMP) to use. If type =3, then this argument is
ignored.

type An integer representing the location of the file (O=filename$, 3=Clipboard)

Use the DIgControlID function to find the numeric 1D for a dialog control based on its
string identifier.

188

The string identifiers come from the last argument in the dialog definition statement that created the
dialog control, such as the TextBox or ComboBox statements.

If the picture is not available (the file filename$ doesn't exist, or it doesn't contain a bitmap, or there
is no bitmap on the clipboard), the picture control will display the picture frame and the text
"(missing picture)". This behavior may be changed by adding 16 to the value of type, changing the
value of type to 16 or 19. If type is 16 or 19 and the picture is not available, then a runtime error will
be triggered.

Use DlgListBoxArray only while a dialog box is running. See the Begin Dialog statement for more
information.

See the Picture statement for more information about displaying pictures in dialog boxes.

DlgText Function
See Also Example Overview

Returns the text associated with a dialog control for the current dialog box.
Syntax DlgText[$] (Id)

where: is:

Id The control ID for a dialog control.

If the control is a text box or a combo box, DIgText function returns the text that appears in
the text box.
If the control is a list box, the function returns its current selection.
If the control is a command button, option button, option group, or a check box, the function returns
the control's label.

Use DIgText only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgText Statement
See Also Example Overview

Changes the text associated with a dialog control for the current dialog box.
Syntax DlgText Id, text$

where: is:

Id The control ID for a dialog control.
text$ The text to use for the dialog control.

If the dialog control is a text box or a combo box, DIgText sets the text that appears in the
text box.

If the dialog control is a list box, a string equal to text$ or beginning with text$ is selected.
If the dialog control is a text control, DIgText sets it to text$.

If the dialog control is a command button, option button, option group, or a check box, the
statement sets its label to text$.

The DIgText statement does not change the identifier associated with the control.

Use DIgText only while a dialog box is running. See the Begin Dialog statement for more
information.

189

DlgValue Function
See Also Example Overview

Returns a numeric value for the state of a dialog control for the current dialog box.

Syntax DlgValue (1d)

where: is:

Id The control ID for a dialog control.

The values returned depend on the type of dialog control:
Control Value Returned
Checkbox 1 = Selected, 0=Cleared, -1=Grayed
Option Group 0 = 1st button selected, 1 = 2nd button selected, etc.
Listbox 0 = 1st item, 1= 2nd item, etc.
Combobox 0 = 1stitem, 1 = 2nd item, etc.
Text, Textbox, Button Error occurs

Use DlgValue only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgValue Statement
See Also Example Overview

Changes the value associated with the dialog control for the current dialog box.
Syntax DlgValue Id, value%

where: is:

Id The control ID for a dialog control.
value% The new value for the dialog control.
The values you use to set the control depend on the type of the control:
Control Value Returned
Checkbox 1 = Select, 0=Clear, -1=Gray.
Option Group 0 = Select 1st button, 1 = Select 2nd button.
Listbox 0 = Select 1st item, 1= Select 2nd item, etc.
Combobox 0 = Select 1st item, 1 = Select 2nd item, etc.
Text, Textbox, Button Error occurs

Use DlgValue only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgVisible Function
See Also Example Overview

Returns -1 if a dialog control is visible, 0 if it is hidden.

190

Syntax DlgVisible (1d)

where: is:

Id The control ID for a dialog control.

Use DIgVisible only while a dialog box is running. See the Begin Dialog statement for more
information.

DlgVisible Statement
See Also Example Overview

Hides or displays a dialog control for the current dialog box.
Syntax DlgVisible Id [, mode]

where: is:

Id The control ID for a dialog control.

mode Value to use to set the dialog control state:
1= Display a previously hidden control.
0= Hide the control.

If you omit the mode, the dialog box state is toggled between visible and hidden. [If it was
hidden, it will become visible. If it was visible, it will be hidden.]

Use DIgVisible only while a dialog box is running. See the Begin Dialog statement for more
information.

Do...While Loop Statement
See Also Example

Repeats a series of program lines as long as a While condition is TRUE or until an Until condition is
TRUE.

Syntax A Do [{ While | Until } condition]
[statementblock]
[ExitDo]
[statementblock]

Loop

Syntax B Do
[statementblock]
[Exit Do]
[statementblock]
Loop [{ While | Until } condition]

where: is:

Condition Any expression that evaluates to TRUE (nonzero) or FALSE (0).

191

statementblock(s) Program lines to repeat while (or until) condition is TRUE.

When an Exit Do statement is executed, control goes to the statement which follows the
Loop statement. When used within a nested loop, an Exit Do statement moves control out of the
immediately enclosing loop.

DoEvents Statement
See Also Example

Yields execution to Windows for processing operating system events.
Syntax DoEvents

DoEvents does not return until Windows has finished processing all events in the queue
and all keys sent by the SendKeys statement.

DoEvents should not be used if other tasks can interact with the running program in unforeseen
ways.

Since VCBasic yields control to the operating system at regular intervals, DoEvents should only be
used to force VCBasic to allow other applications to run at a known point in the program.

DropComboBox Statement
See Also Example

Creates a combination of a drop-down list box and a text box.

Syntax A DropComboBox x, y, dx, dy , text$, .field
Syntax B DropComboBox x, y, dx, dy , stringarray$() , .field
where: is:

X,y The upper left corner coordinates of the list box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the combo box in which the user enters or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.

field The name of the dialog-record field that will hold the text string entered in the text box or
chosen from the list box.

The x argument is measured in 1/4 system-font character-width units. The y argument is
measured in 1/8 system-font character-width units. (See Begin Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as shown in the
following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any pushbutton other than Cancel) is pushed. The field argument
is also used by the dialog statements that act on this control.

You use a drop combo box when you want the user to be able to edit the contents
of the list box (such as filenames or their paths). You use a drop list box when the items in the list
should remain unchanged.

192

Use the DropComboBox statement only between a Begin Dialog and an End
Dialog statement.

DropListBox Statement
See Also Example

Creates a drop-down list of choices.

Syntax A DropListBox x, y, dx, dy, text$, .field
Syntax B DropListBox x , y, dx, dy, stringarray$() , .field
where: is:

X,y The upper left corner coordinates of the list box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the list box.
text$ A string containing the selections for the list box.
stringarray$ An array of dynamic strings for the selections in the list box.

field The name of the dialog-record field that will hold the text string chosen from the list box.

The x argument is measured in 1/4 system-font character-width units. The y argument is
measured in 1/8 system-font character-width units. (See Begin Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin Dialog statement is
executed. The arguments in the text$ string are entered as shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

When the user selects OK (or selects any customized button created using the Button statement), a
number representing the selection's position in the text$ string is recorded in the field designated by
the .field argument. The numbers begin at zero. If no item is selected, it is -1. The .field argument is
also used by the dialog statements that act on this control.

A drop list box is different from a list box. The drop list box only displays its list when the user
selects it; the list box also displays its entire list in the dialog box. The droplistbox may overlap
other controls or fall outside the dialog box when it drops down.

All dialog functions and statements that apply to the ListBox apply to the DropL.istBox as well.

Use the DropListBox statement only between a Begin Dialog and an End Dialog statement.

Environ Function
Example
Returns the string setting for a keyword in the operating system's environment table.

Syntax A Environ[$](environment-string$)

Syntax B Environ[$](numeric expression%)

where: is:

Environment-string$ The name of a keyword in the operating system environment.

193

Numeric expression% A number for the position of the string in the environment table. (1st,
2nd, 3rd, etc.)

If you use the environment-string$ parameter, enter it in uppercase, or Environ returns a
null string ("*"). The return value for Syntax A is the string associated with the keyword requested.

If you use the numeric expression% parameter, the numeric expression is automatically rounded to a
whole number, if necessary. The return value for Syntax B is a string in the form "keyword=value."

Environ returns a null string if the specified argument cannot be found.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted
the function will return a Variant of vartype 8 (string).

Eof Function
See Also Example

Returns the value -1 if the end of the specified open file has been reached, otherwise it will return 0.
Syntax Eof(filenumber%)

where: is:

filenumber% An integer expression identifying the open file to use.

See the Open statement for more information about assigning numbers to files when they
are opened.

Erase Statement
See Also Example

Reinitializes the contents of a fixed array or frees the storage associated with a dynamic array.

Syntax Erase Array [, Array |

where: is:

Array The name of the array variable to re-initialize.

The effect of using Erase on the elements of a fixed array varies with the type of the
element:

Element Type Erase Effect

numeric Each element set to zero.

variable length string Each element set to zero length string.
fixed length string Each element's string is filled with zeros.
Variant Each element set to Empty.

user-defined type Members of each element are cleared as if the members were array elements, i.e.
numeric members have their value set to zero, etc.

Erl Function
See Also Example Overview

Returns the line number where an error was trapped.

Syntax Erl

194

Using a Resume or On Error statement after Erl will reset the return value for Erlto 0. To
maintain the value of the line number returned by Erl, assign it to a variable.

The value of the Erl function can be set indirectly through the Error statement.

Err Function
See Also Example Overview

Returns the run-time error code for the last error trapped.
Syntax Err

If you use a Resume or On Error statement after Erl, the return value for Err is reset to 0.
To maintain the value of the line number returned by Erl, assign it to a variable.

The value of the Err function can be set directly through the Err statement, and indirectly through
the Error statement.

Follow this link to the full list of Trappable Errors .

Err Statement
See Also Example Overview

Sets a run-time error code.
Syntax Err= n%

where: is:

n% An integer expression for the error code (between 1 and 32,767)
0 indicates that no run-time error has been trapped.

The Err statement is used to send error information between procedures.

Error Function
See Also Example Overview

Returns the error message that corresponds to the specified error code.

Syntax Error[$] [(errornumber%)]

Where: Is:

errornumber% An integer between 1 and 32,767 for the error code.

If this argument is omitted, VCBasic returns the error message for the run-time error that has
occurred most recently.

If no error message is found to match the errorcode, "™ (a null string) is returned.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted
the function will return a Variant of vartype 8 (string).

Here is a list of all Trappable Errors.

195

Error Statement
See Also Example Overview

Simulates the occurrence of a VVCBasic or user-defined error.
Syntax Error errornumber%

where: is:

errornumber% An integer between 1 and 32,767 for the error code.

If an errornumber% is one that VVCBasic already uses, the Error statement will simulate an
occurrence of that error.

User-defined error codes should employ values greater than those used for standard VVCBasic error
codes. To help ensure that non-VCBasic error codes are chosen, user-defined codes should work
down from 32,767.

If an Error statement is executed, and there is no error-handling routine enabled, VVCBasic produces
an error message and halts program execution. If an Error statement specifies an error code not
used by VCBasic, the message "User-defined error" is displayed.

Exit Statement
See Also Example

Terminates Loop statements or transfers control to the original calling procedure.
Syntax Exit {Do | For| Function | Sub}
Use Exit Do inside a Do...Loop statement.
Use Exit For inside a For...Next statement.

When the Exit statement is executed from within a loop, control transfers to the
statement after the Loop or Next statement. When used within a nested loop, an Exit statement
moves control out of the immediately enclosing loop.

Use Exit Function inside a Function...End Function procedure.

Use Exit Sub inside a Sub...End Sub procedure.

Exp Function
See Also Example

Returns the value e (the base of natural logarithms) raised to a power.
Syntax Exp(number)

where: is:

number The exponent value for e.

If the variable to contain the return value has a data type Integer, Currency, or Single, the
return value is a single-precision value. If the variable has a data type of Long, Variant, or Double,
the value returned is a double-precision number.

[The constant e is approximately 2.718282]

FileAttr Function
See Also Example

Returns the file mode or the operating system handle for the open file.

Syntax FileAttr(filenumber% , returntype)

196

where: is:

filenumber% An integer expression identifying the open file to use.
returntype Must be eithera 1 ora?2.
1=Returns the file mode*

2=Returns the operating system handle

The argument filenumber% is the number used in the Open statement to open the file.

*If returntype is 1, the following table lists the return values and corresponding file modes:

If the value is: The file Mode is:

1 Input
2 Output
8 Append

FileCopy Statement
See Also Example

Copies a file.
Syntax FileCopy source$, destination$

where: is:

source$ A string expression for the name (and path) of the file to copy.

destination$ A string expression for the name (and path) for the copied file.

Wildcards (* or ?) are not allowed for either the source$ or destination$. The source$ file

cannot be copied if it is opened by VCBasic for anything other than Read access.

FileDateTime Function
See Also Example

Returns the last modification date and time for the specified file.
Syntax FileDateTime(pathname$)

where: is:

pathname$ A string expression for the name of the file to query.

Pathname$ can contain path and disk information, but cannot include wildcards (* and ?).

FileLen Function
See Also Example

Returns the length of the specified file.

Syntax FileLen(pathname$)

197

where: is:

pathname$ A string expression that contains the name of the file to query.

FileLen returns a result of type Long.
Pathname$ can contain path and disk information, but cannot include wildcards (* and ?).

If the specified file is open, FileLen returns the length of the file before it was opened.

Fix Function
See Also Example

Returns the integer part of a number.

Syntax Fix (number)

where: is:

number Any valid numeric expression.

The return value's data type matches the type of the numeric expression. This includes
Variant expressions, unless the numeric expression is a string (vartype 8) that evaluates to a
number, in which case the data type for its return value is double (vartype 5). If the numeric
expression is vartype 0 (empty), the data type for the return value is vartype 3 (long).

For both positive and negative numbers, Fix removes (truncates) the fractional part of the
expression and returns the integer part only. For example, Fix (6.2) returns 6; Fix (-6.2) returns -6.

For...Next Statement
See Also Example

Repeats a series of program lines a fixed number of times.
Syntax For counter = start TO end [STEP increment]

[statementblock]

[Exit For]

[statementblock]
Next [counter]

where: is:

counter A numeric variable for the loop counter.
start The beginning value of the counter.
end The ending value of the counter.

increment The amount by which the counter is changed each time the loop is run. (The
default is one.)

statementblock Basic functions, statements, or methods to be executed.

198

The start and end values must be consistent with increment: If end is greater than start,
increment must be positive. If end is less than start, increment must be negative. VCBasic compares
the sign of (start - end) with the sign of increment. If the signs are the same, and end does not equal
start, the For...Next loop is started. If not, the loop is omitted in its entirety.

With a For...Next loop, the program lines following the For statement are
executed until the Next statement is encountered. At this point, the Step amount is added to the
counter and compared with the final value, end. If the beginning and ending values are the same, the
loop executes once, regardless of the Step value. Otherwise, the Step value controls the loop as
follows:

Step Value Loop Execution

Positive If counter is less than or equal to end, the Step value is added to counter. Control returns to
the statement after the For statement and the process repeats. If counter is greater than end, the loop
is exited; execution resumes with the statement following the Next statement.

Negative The loop repeats until counter is less than end.
Zero The loop repeats indefinitely.

Within the loop, the value of the counter should not be changed, as changing the
counter will make programs more difficult to maintain and debug.

For...Next loops can be nested within one another. Each nested loop should be
given a unique variable name as its counter. The Next statement for the inside loop must appear
before the Next statement for the outside loop. The Exit For statement can be used as an alternative
exit from For...Next loops.

If the variable is left out of a Next statement, the Next statement will match the
most recent For statement. If a Next statement occurs prior to its corresponding For statement,
VCBasic will return an error message.

Multiple consecutive Next statements can be merged together. If this is done, the counters must
appear with the innermost counter first and the outermost counter last. For example:

Fori=1To 10
[statementblock]
Forj=1To5
[statementblock]
Next j, i

Format Function
See Also Example

Returns a string from an expression; the string is formatted according to a specified format.

Syntax Format[$](expression [, format])

where: is:

expression The value to be formatted. It can be a number, Variant, or string.

format A string expression representing the format to use. Select one of the topics below for a
detailed description of format strings.

199

Format formats the expression as a number, date, time, or string depending upon the
format argument.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted
the function will return a Variant of vartype 8 (string). As with any string, you must enclose the
format argument in quotation marks ("").

Numeric values are formatted as either numbers or date/times. If a numeric expression is supplied
and the format argument is omitted or null, the number will be converted to a string without any
special formatting.

Both numeric values and Variants can be formatted as dates. When formatting numeric values as
dates, the value is interpreted according the standard Basic date encoding scheme. The base date,
December 30, 1899, is represented as zero, and other dates are represented as the number of days
from the base date.

Strings are formatted by transferring one character at a time from the input expression to the output
string.

For more information, see these topics:
Formatting Numbers
Formatting Dates and Times

Formatting Strings

FreeFile Function
See Also Example

Returns the lowest unused file number.
Syntax FreeFile

The FreeFile function is used when you need to supply a file number and want to make
sure that you are not choosing a file number that is already in use.

The value returned can be used in a subsequent Open statement.

Function ... End Function Statement
See Also Example

Defines a function procedure.

[The purpose of a function is to produce and return a single value of a specified type. Use Sub to
define a procedure with no return value.]

Syntax [Static] [Private] Function name [([Optional Jparameter [Astype]...)] [As
functype]

name= expression
End Function

where: is:

Static ~ Specifies that all the variables declared within the function will retain their values as long
as the program is running, regardless of the way the variables are declared.

200

Private Specifies that the function will not be accessible to functions and subprograms from other
modules. Only procedures defined in the same module will have access to a Private function.

name A function name.

parameter The argument(s) to pass to the function when it is called.

type The data type for the function arguments.

functype The data type for the return value.

name=expression The expression that sets the return value for the function.
Recursion is supported.

The data type of name determines the type of the return value. Use a type character at the end of the
name, or use the As functype clause to specify the data type. If omitted, the default data type is
Variant. When calling the function, you need not specify the type character.

The parameters are specified as a comma-separated list of variable names. The data type of a
parameter can be specified by using a a type character or by using the As clause. Record parameters
are declared using an As clause and a type that has previously been defined using the Type
statement. Array parameters are indicated by using empty parentheses after the parameter. The
array dimensions are not specified in the Function statement. All references to an array parameter
within the body of the function must have a consistent number of dimensions.

You specify the return value for the function name using the name=expression assignment, where
name is the name of the function and expression evaluates to a return value. If omitted, the value
returned is O for numeric functions, an empty string (") for string functions, and vartype 0 (Empty)
for a return type of Variant.

If you declare a parameter as Optional, a procedure can omit its value when calling the function.
Only parameters with Variant data types can be declared as optional, and all optional arguments
must appear after all required arguments in the Function statement. The function IsMissing must be
used to check whether an optional parameter was omitted by the user or not. Named parameters are
described under the Call statement heading, but they can be used when the function is used in an
expression as well.

The Static keyword specifies that all the variables declared within the function will retain their
values as long as the program is running, regardless of the way the variables are declared.

The Private keyword specifies that the function will not be accessible to functions and subprograms
from other modules. Only procedures defined in the same module will have access to a Private
function.

Basic procedures use the call by reference convention. This means that if a procedure assigns a
value to a parameter, it will modify the variable passed by the caller. This feature should be used
with great care.

The function returns to the caller when the End Function statement is reached or when an Exit
Function statement is executed.

FV Function
See Also Example

Returns the future value for a constant periodic stream of cash flows as in an annuity or a loan.

Syntax FV (rate, nper,pmt, pv, due)

201

where: is:

rate Interest rate per period.
nper Total number of payment periods.
pmt Constant periodic payment per period.

pv Present value or the initial lump sum amount paid (as in the case of an annuity) or received
(as in the case of a loan).

due An integer value for when the payments are due (0O=end of each period, 1= beginning of the
period).

The given interest rate is assumed constant over the life of the annuity.

If payments are on a monthly schedule and the annual percentage rate on the annuity or loan is 9%,
the rate is 0.0075 (.0075=.09/12).

Get Statement
See Also Example

Reads data from a file opened in Random or Binary mode and puts it in a variable.

Syntax Get [#] filenumber%, [rechnumber&], varname

where: is:

You may use this symbol or not. It has no effect.
filenumber% An integer expression identifying the open file from which to read.

recnumber& A Long expression containing the number of the record (for Random mode) or
the offset of the byte (for Binary mode) at which to start reading.

varname The name of the variable into which Get reads file data. Varname can be any
variable except Object, Application Data Type, or Array variables (single array elements can be
used).

For more information about how files are numbered when they're opened, see the Open
statement.

Recnumber& is in the range 1 to 2,147,483,647. If it is omitted, the next record or byte is read.

The commas before and after the recnumber& are required, even if you do not supply a
recnumber&.

For Random mode, the following rules apply:

Blocks of data are read from the file in chunks whose size is equal to the size specified in the Len
clause of the Open statement. If the size of varname is smaller than the record length, the additional
data is discarded. If the size of varname is larger than the record length, an error occurs.

For variable length String variables, Get reads two bytes of data that indicate the length of the string,
then reads the data into varname.

202

For Variant variables, Get reads two bytes of data that indicate the type of the Variant, then reads
the body of the Variant into varname. Note that Variants containing strings contain two bytes of data
type information followed by two bytes of length followed by the body of the string.

User defined types are read as if each member were read separately, except no padding occurs
between elements.

Files opened in Binary mode behave similarly to those opened in Random mode, except:
Get reads variables from the disk without record padding.

Variable length Strings that are not part of user defined types are not preceded by the two-byte
string length. Instead, the number of bytes read is equal to the length of varname.

GetAttr Function
See Also Example

Returns the attributes of a file, directory or volume label.
Syntax GetAttr(pathname$)

where: is:

pathname$ A String expression for the name of the file, directory, or label to query.
Pathname$ cannot contain wildcards (* and ?).
The file attributes returned by GetAttr are as follows:
Value Meaning
0 Normal file
Read-only file
Hidden file
System file

o A N

Volume label
16 Directory

32 Archive — file has changed since last backup.

GetField Function [VCBasic Extension]
See Also Example

Returns a substring from a source string.

Syntax GetField[$](string$, field_number% , separator_chars$)

where: is:

string$ A list of fields, divided by separator characters.
field_number% The number of the field to return, starting with 1.

separator_chars$ The characters separating each field.

203

Multiple separator characters can be specified. If field_number is greater than the number of fields
in the string, an empty string (") is returned.

Global Statement
See Also Example

Declare Global variables for use in a VCBasic program.

Syntax Global variableName [As type] [,variableName [As type]] ...

where: is:

variableName A variable name

type The data type for variableName

Data declared using Global in the Common area of a macro is shared across all loaded macros.

The Global statement should be used only when macros are being designed to share data. If a
variable is to be available only to all procedures of a particular macro, the variable should be
delcared using the Dim statement in the Common area

If you attempt to load a macro containing a global variable that has the same name but a different
data type as an existing global variable, the macro load will fail.

If the As clause is not used, the type of the global variable can be specified by using a type character
as a suffix to variableName. The two different type-specification methods can be intermixed in a
single Global statement (although not on the same variable).

Regardless of which mechanism you use to declare a global variable, you can choose to use or omit
the type character when referring to the variable in the rest of your program. The type suffix is not
considered part of the variable name.

VCBasic is a strongly typed language: all variables must be given a data type or they will be
automatically assigned a type of Variant.

The available data types are:
Arrays

Numbers

Records

Strings

Variants

Obijects
[Dialog is a data type, but you cannot use the Global statement to declare a dialog record.]

GoTo Statement
See Also Example

Transfers program control to the label specified.
Syntax GoTo { label }

where: is:

204

label A name beginning in the first column of a line of code and ending with a colon ().

A label has the same format as any other Basic name. To be recognized as a label, a name
must begin in the first column, and be followed immediately by a colon (:). Reserved words are not
valid labels.

GoTo cannot be used to transfer control out of the current Function or Subprogram.

GroupBox Statement [VCBasic Extension]
See Also Example

Defines and draws a box that encloses sets of dialog box items, such as option boxes and check
boxes, within a dialog box.

Syntax GroupBox x,y, dx, dy, text$ [, .id]

where: is:

X,y The upper left corner coordinates of the group box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the group box.
text$ A string containing the title for the top border of the group box.

.id The optional string ID for the groupbox, used by the dialog statements that act on this
control.

The x argument is measured in 1/4 system-font character-width units. The y argument is
measured in 1/8 system-font character-width units. (See Begin Dialog for more information.)

If text$ is wider than dx, the additional characters are truncated. If text$ is an empty string ("""), the
top border of the group box will be a solid line.

Use the GroupBox statement only between a Begin Dialog and an End Dialog statement.

Hex Function
See Also Example

Returns the hexadecimal representation of a number (or numeric expression) as a string.
Syntax Hex[$](number)

where: is:

number Any numeric expression that evaluates to a number.

If number is an integer, the return string contains up to four hexadecimal digits; otherwise,
the value will be converted to a Long Integer, and the string can contain up to 8 hexadecimal digits.

To represent a hexadecimal number directly, precede the hexadecimal value with &H. For example,
&H10 equals decimal 16 in hexadecimal notation.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted
the function will return a Variant of vartype 8 (string).

Hour Function
See Also Example

205

Returns the hour of day component (0-23) of a date-time value.

Syntax Hour(time)

where: is:

time Any numeric or string expression that can evaluate to a date and time.

Hour accepts any type of time including strings and will attempt to convert the input value
to a date value.

The return value is a Variant of vartype 2 (integer). If the value of time is Null, a Variant of vartype
1 (null) is returned.

If Time is a double-precision value, then the numbers to the left of the decimal point denote the date
and the decimal value denotes the time (from 0 to .99999). Use the TimeValue function to obtain
the correct value for a specific time.

If ... Then ... Else
See Also Example

Executes alternative blocks of program code based on the logical values of one or more expressions.

Syntax A If condition Then then_statement [Else else_statement]
Syntax B If condition Then

statement_block
[Elself expression Then

statement_block]...

[Else
statement_block]
End If
where: is:
condition Any expression that evaluates to TRUE (non-zero) or FALSE (zero).

then_statement Any valid single expression.
else_statement Any valid single expression.
expression Any expression that evaluates to TRUE (non-zero) or FALSE (zero).

statement_block Zero or more valid expressions. Separate expressions by colons (:) or list them on
different lines.

When multiple statements are required in either the Then or Else clauses, use the block
version (Syntax B) of the If statement.

206

‘$Include Metacommand [VCBasic Extension]*
See Also Example

Includes statements from the specified file.
Syntax '$Include: "'filename™

where: is:

filename The name and location (drive and path) of the file to include.

It is recommended (although not required) that you use a file extension of .SBH for
filename.

If no directory or drive is specified, the compiler will search for filename on the source file search
path.

All metacommands must begin with an apostrophe (') and are recognized by the compiler only if the
command starts at the beginning of a line.

For compatibility with other versions of VCBasic, you can enclose the filename in single quotation
marks (').

*VCBasic offers a number of extensions that are not included in Visual Basic.

Input Function
See Also Example

Returns a string containing the characters read from a file.

Syntax Input[$](number% , [#]filenumber%)

where: is:
number% The number of characters to be read from the file.
You may use this symbol or not. It has no effect.

filenumber% An integer expression identifying the open file to read from.

The file pointer is advanced the number of characters read. Unlike the Input # statement,
Input returns all characters it reads, including carriage returns, line feeds, and leading spaces.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted
the function will return a Variant of vartype 8 (string).

To return a given number of bytes from a file, use the InputB function.

Input Statement
See Also Example

Reads data from a sequential file and assigns the data to variables.

207

Syntax A Input [#] filenumber% , variable [, variable]...

Syntax B Input [prompt$,] variable [, variable]...
where: is:
You may use this symbol or not. It has no effect.

filenumber% An integer expression identifying the open file to read from.
variable The variable(s) to contain the value(s) read from the file.

prompt$ An optional string that prompts for keyboard input.

The filenumber% is the number used in the Open statement to open the file.
The list of variables is separated by commas.
If filenumberr% is not specified, the user is prompted for keyboard input.

If prompt$ is omitted, users will be prompted with a ""?".

InputBox Function
See Also Example

Displays a dialog box containing a prompt and returns a string entered by the user.

Syntax InputBox[$](prompt$, [title$] , [default$] ,[xpos%o , ypos%e])

where: is:

prompt$ A string expression containing the text to show in the dialog box.
titlke$ The caption to display in the dialog box's title bar.

default$ The string expression to display in the edit box as the default response.

Xpos%, ypos% Numeric expressions, specified in dialog box units, that determine the position of

the dialog box.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted

the function will return a Variant of vartype 8 (string).

The length of prompt$ is restricted to 255 characters. This figure is approximate and depends on the
width of the characters used. Note that a carriage return and a line-feed character must be included in

prompt$ if a multiple-line prompt is used.

If either prompt$ or default$ is omitted, nothing is displayed in the corresponding area.

Xpos% determines the horizontal distance between the left edge of the screen and the left border of
the dialog box. Ypos% determines the horizontal distance from the top of the screen to the dialog

box's upper edge.

208

If xpos% and ypos% are not entered, the dialog box's position defaults to centered roughly one third
of the way down the screen. A horizontal dialog box unit is 1/4 of the average character width in the
system font; a vertical dialog box unit is 1/8 of the height of a character in the system font.

Note: If you want to specify the dialog box's position, you must enter both of these arguments. If
you enter one without the other, the box's position will be set to the default positioning.

If the user presses Enter, or selects the OK button, InputBox returns the text contained in the input
box. If the user selects Cancel, the InputBox function returns a null string (").

InStr Function
See Also Example

Returns the character position of the first occurrence of one string within another string.
[To obtain the byte position of the first occurrence of one string within another string, use the
InStrB function.]

Syntax A InStr([start%,] string1$, string2$)
Syntax B InStr(start , stringl$, string2$[, compare])
where: is:

start% The position in string1$ to begin the search. (1=first character in string.)
string1$ The string to search.
string2$ The string to find.

compare An integer expression for the method to use to compare the strings.
(O=case-sensitive, 1=case-insensitive.)

If start% is not specified, the search starts at the beginning of the string (equivalent to a
start% of 1). string1$ and string2$ can be of any type. They will be converted to strings.

InStr returns a zero under the following conditions:
1. start% is greater than the length of string2$.
2. string1$ is a null string.

3. string2$ is not found.

If either string1$ or string2$ is a null Variant , Instr returns a null Variant.

If string2$ is a null string ("), Instr returns the value of start%.

If compare is 0, a case-sensitive comparison based on the ANSI character set sequence is
performed.

If compare is 1, a case-insensitive comparison is done based upon the relative order of characters as
determined by the country code setting for your system.

If compare is omitted, the module level default, as specified with Option Compare, is used.

IPmt Function
See Also Example

209

Returns the interest portion of a payment for a given period of an annuity.

Syntax IPmt(rate , per, nper, pv, fv, due)

where: is:
rate Interest rate per period.
per Particular payment period in the range 1 through nper.

nper Total number of payment periods.

pv Present value of the initial lump sum amount paid (as in the case of an annuity) or received
(as in the case of a loan).

fv Future value of the final lump sum amount required (as in the case of a savings plan) or
paid (0 as in the case of a loan).

due 0 if payments are due at the end of each payment period, and 1 if they are due at the
beginning of the period.

The given interest rate is assumed to remain constant over the life of the annuity. If
payments are on a monthly schedule, then rate will be 0.0075 if the annual percentage rate on the
annuity or loan is 9%. (0.09 / 12)

IRR Function
See Also Example

Returns the internal rate of return for a stream of periodic cash flows.
Syntax IRR(valuearray(), guess)

where: is:

valuearray() An array containing cash flow values.
guess A ballpark estimate of the value returned by IRR.

valuearray() must have at least one positive value (representing a receipt) and one negative
value (representing a payment).
All payments and receipts must be represented in the exact sequence.
The value returned by IRR will vary with the change in the sequence of cash flows.

In general, a guess value of between 0.1 (10 percent) and 0.15 (15 percent) would be a reasonable
estimate.

IRR is an iterative function. It improves a given guess over several iterations until the result is within
0.00001 percent.

If it does not converge to a result within 20 iterations, it signals failure.

IsMissing Function
See Also Example

Returns -1 (TRUE) if an optional parameter was not supplied by the user, 0 (FALSE) otherwise.

[In other words, TRUE indicates the optional parameter is missing, FALSE indicates that it is not
missing (it was supplied).]

Syntax IsMissing(argname)

210

where: is:

argnameAn optional argument for a subprogram, function, VCBasic statement, or VCBasic
function.

IsMissing is used in procedures that have optional arguments to find out whether the
argument's value was supplied or not.

Kill Statement
See Also Example

Deletes files from a hard disk or floppy drive.
Syntax Kill pathname$

where: is:

pathname$ A String expression that specifies a valid DOS file.
The pathname$ specification can contain paths and wildcards.

Kill deletes files only, not directories. Use the RmDir function to delete directories.

LBound Function
See Also Example

Returns the lower bound of the subscript range for the specified array.

Syntax LBound(arrayname [, dimension])

where: is:
arrayname The name of the array to use.
dimension The dimension to use.

The dimensions of an array are numbered starting with 1.
If dimension is not specified, 1 is used as a default.

LBound can be used with UBound to determine the length of an array.

LCase Function
See Also Example

Returns a copy of a string, with all uppercase letters converted to lowercase.

Syntax LCase[$](string$)

where: is:

string$ A string, or an expression containing the string to use.

211

The translation is based on the country specified in the Windows Control Panel. Lcase$
accepts expressions of type String. LCase accepts any type of argument, including numeric values,
and will convert the input value to a string.

The dollar sign, "$", in the function name is optional. If specified the return type is String. If omitted
the function will typically return a Variant of vartype 8 (string). If the value of string$ is NULL, a
Variant of vartype 1 (Null) is returned.

Left Function
See Also Example

Returns a string of a specified number of characters copied from the beginning of another string.

Syntax Left[$](string$, length%)

where: is:

string$ A string or an expression containing the string to copy.

length% The number of characters to copy.

If length% is greater than the length of string$, Left returns the whole string.

Left$ accepts expressions of type String. Left accepts any type of string$, including numeric
values, and will convert the input value to a string.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If
omitted, the function will typically return a VVariant of vartype 8 (string).

If the value of string$ is NULL, a Variant of vartype 1 (Null) is returned.

To obtain a string of a specified number of bytes, copied from the beginning of another string, use
the LeftB function.

Len Function
See Also Example

Returns the length of a string or variable.

Syntax A Len(string$)
Syntax B Len(varname)
where: is:

string$ A string or an expression that evaluates to a string.

varnameA variable that contains a string.

If the argument is a string, the number of characters in the string is returned.

212

If the argument is a Variant variable, Len returns the number of bytes required to represent its value
as a string.

If the argument is not a string or variant, the length of the built-in data type or user-defined type is
returned.

If syntax B is used, and varname is a Variant containing a NULL, Len will return a Null Variant.

To return the number bytes in a string, use the LenB function.

Let (Assignment Statement)
See Also Example

Assigns an expression to a VCBasic variable.
Syntax [Let] variable = expression

where: is:

variable The name of a VC Basic variable to which the expression is assigned.

expression The expression to assign to the variable.

The keyword Let is optional.

The Let statement can be used to assign a value or expression to a variable with a data type of
Numeric, String, Variant or Record variable.

The Let statement can also assign a value to a record field or to an element of an array.
When assigning a value to a numeric or string variable, standard conversion rules apply.
Let differs from Set in that Set assigns a variable to an OLE object. For example,

Set 01 =02 will set the object reference.

Let ol =02 will set the value of the default member.

Like Operator
See Also Example

Returns the value -1 (TRUE) if a string matches a pattern and the value 0 (FALSE) if the string
doesn't match the pattern.

Syntax string$ LIKE pattern$

where: is:

string$ Any string expression.

pattern$ Any string expression to match to string$.

pattern$ can include the following special characters:

Character: Matches:

? A single character

* A set of zero or more characters
A single digit character (0-9)

213

[chars] A single character in chars

[fchars] A single character not in chars

[schar-echar] A single character in range schar to echar
['schar-echar] A single character not in range schar to echar

Both ranges and lists can appear within a single set of square brackets. Ranges are matched
according to their ANSI values. In a range, schar must be less than echar.

If either string$ or pattern$ is NULL then the result value is NULL.
The Like operator respects the current setting of Option Compare.

For more information about operators, see Expressions.

Line Input Statement
See Also Example

Reads a line from a sequential file or keyboard into a string variable.

Syntax A Line Input [#] filenumber% , varname$

Syntax B Line Input [prompt$,] varname$

where: is:

You may use this symbol or not. It has no effect.

filenumber% An integer expression identifying the open file to read from.

prompt$ An optional string that can be used to prompt for keyboard input; it must be a
literal string.
varname$ A string variable to contain the line read.

If specified, the filenumber% is the number used in the Open statement to open the file. If
filenumber% is not provided, the line is read from the keyboard.

If prompt$ is not provided, a prompt of "?" is used.

ListBox Statement
See Also Example

Defines a list box of choices for a dialog box.

Syntax A ListBox x,y, dx, dy, text$, .field
Syntax B ListBox x, y, dx, dy, stringarray$() , .field
where: is:

X,y The upper left corner coordinates of the list box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the list box.

text$ A string containing the selections for the list box.

214

stringarray$ An array of dynamic strings for the selections in the list box.

field The name of the dialog-record field that will hold a number for the choice made in the list
box.

The x argument is measured in 1/4 system-font character-width units. The y argument is
measured in 1/8 system-font character-width units. (See Begin Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin Dialog statement is
executed. The arguments in the text$ string are entered as shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

A number representing the selection’s position in the text$ string is recorded in the field designated
by the .field argument when the OK button (or any pushbutton other than Cancel) is pushed. The
numbers begin at 0. If no item is selected, it is -1. The field argument is also used by the dialog
statements that act on this control.

Use the ListBox statement only between a Begin Dialog and an End Dialog statement.

Loc Function
See Also Example

Returns the current offset within an open file.
Syntax Loc(filenumber%)

where: is:

filenumber% An integer expression identifying the open file to query.
The filenumber% is the number used in the Open statement of the file.
For files opened in Random mode, Loc returns the number of the last record read or written.

For files opened in Append, Input, or Output mode, Loc returns the current byte offset divided by
128.

For files opened in Binary mode, Loc returns the offset of the last byte read or written.

Lock Statement
See Also Example

Controls access by other processes to some or all of an open file.

Syntax Lock [#]filenumber% [, [start&] [To end&]]
Unlock [#]filenumber% [, [start&][To end&]]

where: is:

You may use this symbol or not. It has no effect.
filenumber% An integer expression identifying the open file.
start& Number of the first record or byte offset to lock/unlock.

end& Number of the last record or byte offset to lock/unlock.

215

The filenumber% is the number used in the Open statement of the file.
For Binary mode, start&, and end& are byte offsets.
For Random mode, start&, and end& are record numbers.

If start& is specified without end&, then only the record or byte at start& is locked. If To end& is
specified without start&, then all records or bytes from record number or offset 1 to end& are
locked.

For Input, Output and Append modes, start&, and end& are ignored and the whole file is locked.

Lock and Unlock always occur in pairs with identical parameters. All locks on open files must be
removed before closing the file, or unpredictable results will occur.

Lof Function
See Also Example

Returns the length in bytes of an open file specified by filenumber%.

Syntax Lof(filenumber%)

where: is:

filenumber% An integer expression identifying the open file.

The filenumber% is the number used in the Open statement of the file.

Log Function
See Also Example

Returns the natural logarithm of a number.

Syntax Log(number)

where: is:

number Any valid numeric expression.

The return value is single-precision for an integer, currency or single-precision numeric
expression.

The return value is double precision for a long, Variant or double-precision numeric expression.

Lset Statement
See Also Example

Copies one string to another, or assigns a user-defined type variable to another.

Syntax A Lset string$ = string-expression

Syntax B Lset variablel = variable2

216

Me

where: is:

string$ A string or string expression to contain the copied characters.
string-expression An expression containing the string to copy.
variablel A variable with a user-defined type to contain the copied variable.

variable2 A variable with a user-defined type to copy.

If string$ is shorter than string-expression, Lset copies the leftmost characters of
string-expression into string$. The number of characters copied is equal to the length of string$.

If string$ is longer than string-expression, all characters of string-expression are copied into string$,
filling it from left to right. All leftover characters of string$ are replaced with spaces.

In Syntax B, the number of characters copied is equal to the length of the shorter of variablel and
variable2.

Lset cannot be used to assign variables of different user-defined types if either contains a Variant or
a variable-length string.

LTrim Function
See Also Example

Returns a copy of a string with all leading space characters removed.

Syntax LTrim[$](string$)

where: is:

string$ A string or expression containing a string to copy.

Ltrim$ [with $] accepts expressions of type String. Ltrim [without the $] accepts any
type of expression, including numeric values, and will convert the input value to a string.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If
omitted, the function typically returns a Variant of vartype 8 (string). If the value of string$ is
NULL, a Variant of vartype 1 (Null) is returned.

Example See Also

Refers to the currently used OLE2 automation object.

Syntax Me

The alias Me refers to the current form, and is normally used in functions in place of the
formname.

217

Some VCBasic modules are attached to application objects and VCBasic subroutines are invoked
when that application object encounters events. A good example is a user visible button that triggers
a Basic routine when the user clicks the mouse on the button.

Subroutines in such contexts can use the variable Me to refer to the object that triggered the event
(i.e., which button was clicked). The programmer can use Me in all the same ways as any other
object variable except that Me cannot be Set.

Mid Function
See Also Example

Returns a portion of a string, starting at a specified character position within the string.
Syntax Mid[$](string$, start%][, length%)])

where: is:

string$ A string or expression that contains the string to change.
start% The starting position in string$ to begin replacing characters.
length% The number of characters to replace.

Mid accepts any type of string$, including numeric values, and will convert the input value
to a string. If the length% argument is omitted, or if string$ is smaller than length%, then Mid
returns all characters in string$. If start% is larger than string$, then Mid returns a null string ("").

The index of the first character in a string is 1.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If
omitted, the function typically returns a Variant of vartype 8 (string). If the value of string$ is Null,
a Variant of vartype 1 (Null) is returned. Mid$ requires the string argument to be of type string or
variant. Mid allows the string argument to be of any datatype.

To return a specified number of bytes from a string, use the MidB function. With the MidB
function, start% specifies a byte position and length% specifies a number of bytes.

To modify a portion of a string value, see Mid Statement.

Mid Statement
See Also Example

Replaces part (or all) of one string with another string, starting at a specified location.
Syntax Mid (stringvar$, start%f, length%]) = string$

where: is:

stringvar$ The string to change.

start% An expression for the position to begin replacing characters.
length% An expression for the number of characters to replace.
string$ The string to place into another string.

If the length% argument is omitted, or if there are fewer characters in string$ than specified
in length%, then Mid replaces all the characters from the start% to the end of the string$.
If start% is larger than the number of characters in the indicated stringvar$, then Mid appends
string% to stringvar$.

If length% is greater than the length of string$, then length% is set to the length of string$. If start%
is greater than the number of characters in stringvar$, an illegal function call error will occur at

218

runtime. If length% plus start% is greater than the length of stringvar$, then only the characters up
to the end of stringvar$ are replaced.

Mid never changes the number of characters in stringvar$.
The index of the first character in a string is 1.

To replace a specified number of bytes in a string with those from another string, use the MidB
statement. With the MidB statement, start% specifies a byte position and length% specifies a
number of bytes.

Minute Function
See Also Example

Returns an integer indicating the minute component (0-59) of a date-time value.

Syntax Minute(time)

where: is:

time Any expression that can evaluate to a date-time value.

Minute accepts any type of time, including strings, and will attempt to convert the input
value to a date value. If it cannot convert it, a run-time error occurs.

The return value is a Variant of vartype 2 (Integer). If the value of time is null, a Variant of vartype
1 (null) is returned.

MKkDir Statement
See Also Example

Creates a new directory.
Syntax MKDir path$

where: is:

path$ A string expression identifying the new default directory to create.
The syntax for path$ is:
[drive:] [\] directory [\directory]

The drive argument is optional. If drive is omitted, MkDir makes a new directory on the current
drive. The directory argument is any directory name.

Month Function
See Also Example

Returns an integer from 1 to 12 indicating the month component of a date-time value.
Syntax Month(date)

where: is:

date Any expression that evaluates to a date-time value.

219

It accepts any type of date, including strings, and will attempt to convert the input value to
a date value. If it cannot convert it, a run-time error occurs.

The return value is a Variant of vartype 2 (integer). If the value of date is null, a Variant of vartype
1 (null) is returned.

Msgbox Function
See Also Example

Displays a message dialog box and returns a value (1-7) indicating which button the user selected.
Syntax Msgbox(prompt$,[buttons%]], title$])

where: is:

prompt$ The text to display in a dialog box.

buttons% An integer value for the buttons, the icon, and the default button choice to display
in a dialog box.

title$ A string expression containing the title for the message box.

prompt$ must be no more than 1,024 characters long. A message string greater than 255
characters without intervening spaces will be truncated after the 255th character.

buttons% is the sum of three values, one from each of the following groups:

\Y Description
a
|
u
£
Group 1: OK only
Buttons 0
OK, Cancel
1
Abort, Retry, Ignore
2
Yes, No, Cancel
3
Yes, No
4
Retry, Cancel
5
Group 2: Critical Message (
Icons 1 STOP)
6
Warning Query (?)
3
2
Warning Message (!
4)

220

Group 3:
Defaults

N

o 01

5
1
2

Information
Message (i)

First button

Second button

Third button

If buttons% is omitted, Msgbox displays a single OK button.

After the user clicks a button, Msgbox returns a value indicating the user's choice. The return values

for the Msgbox function are:

Msgbox Statement
Example

See Also

Displays a prompt in a message dialog box.

Syntax MsgBox prompt$, [buttons%]][, title$]

where:

is:

\Y

a
|
u

£

Button

Pressed

OK

Cancel

Abort

Retry

Ignore

Yes

No

221

prompt$ The text to display in a dialog box.

buttons% An integer value for the buttons, the icon, and the default button choice to display
in a dialog box.
title$ A string expression containing the message box's title.

Prompt$ must be no more than 1,024 characters long, including spaces. If prompt$ is
greater than 255 characters without intervening spaces, it will be truncated after the 255th
character.

If title$ is omitted, nothing will be diplayed in the title bar.
If buttons% is omitted, Msgbox displays a single OK button in the message box.

To specify the button choices, the icons, and which button will be selected by default, you must
include a value for buttons% . The value for buttons% will be the sum of three values, one from each
of the following groups:

Groups \% Description
a
|
u
e
Buttons OK only
0
OK, Cancel
1
Abort, Retry, Ignore
2
Yes, No, Cancel
3
Yes, No
4
Retry, Cancel
5
Icons Critical Message (
1 STOP)
6
Warning Query (?)
3
2
Warning Message (!
4)
8
Information
6 Message (i)
4
Default First button
Selectio 0
n

222

Second button

N

o o1

Third button

[EE

Name Statement
See Also Example

Renames a file or moves a file from one directory to another.
Syntax Name oldfilename$ As newfilename$

where: is:

oldfilename$ A string expression containing the file to rename.
newfilename$ A string expression containing the new name for the file.

A path can be part of either filename argument. If the paths are different, the file is moved
to the new directory.

A file must be closed in order to be renamed. If the file oldfilename$ is open or if
the file newfilename$ already exists, VCBasic generates an error message.

New Operator
See Also Example

Allocates and initializes a new OLE2 object of the named class.

Syntax Set objectVar = New className

Dim objectVar As New className

where: is:
objectVar The OLE2 object to allocate and initialize.
className The class to assign to the object.

In the Dim statement, New marks objectVar so that a new object will be allocated and initialized
when objectVar is first used. If objectVar is not referenced, then no new object will be allocated.

Note: An object variable that was declared with New will allocate a second object if objectVar is
Set to Nothing and referenced again.

Nothing Function
See Also Example Overview

Returns an object value that doesn't refer to an object.

223

Syntax Set variableName = Nothing

where: is:

variableName The name of the object variable to set to Nothing.

Nothing is the value object variables have when they do not refer to an object, either because the
have not been initialized yet or because they were explicitly Set to Nothing. For example:

If Not objectVar Is Nothing then
objectVar.Close
Set objectVar = Nothing
End If

NPV Function
See Also Example

Returns the net present value of an investment based on a stream of periodic cash flows and a
constant interest rate.

Syntax NPV (rate, valuearray())

where: is:

rate Discount rate per period. If the discount rate is 12% per period, rate is the decimal
equivalent, i.e. 0.12.

valuearray() An array containing cash flow values.

Valuearray(') must have at least one positive value (representing a receipt) and one
negative value (representing a payment). All payments and receipts must be represented in the exact
sequence. The value returned by NPV will vary with the change in the sequence of cash flows.

NPV uses future cash flows as the basis for the net present value calculation. If the first cash flow
occurs at the beginning of the first period, its value should be added to the result returned by NPV
and must not be included in valuearray().

Null Function
See Also Example

Returns a Variant value set to NULL.

Syntax Null

Null is used to set a Variant to the Null value explicitly, as follows:
variableName = Null

Note that Variants are initialized by VCBasic to the empty value, which is different from the null
value.

224

Object Class
See Also Example

A class that provides access to OLE2 automation objects.

Syntax Dim variableName As Object

where: is:

variableName The name of the object variable to declare.

To create a new object, first dimension a variable, using the Dim statement, then Set the variable to
the return value of CreateObject or GetObject, as follows:

Dim OLE2 As Object
SetOLE2 = CreateObject(*spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax: objectvar.property or
objectvar.method, as follows:

OLE2.reset

Oct Function
See Also Example

Returns the octal representation of a number as a string.

Syntax Oct[$](number)

where: is:

number A numeric expression for the number to convert to octal.

If the numeric expression has a data type of Integer, the returned string contains up to six
octal digits.

If the numeric expression is not an Integer, it will be converted to a data type of Long, and the
returned string can contain up to 11 octal digits.

To represent an octal number directly, precede the octal value with &O (this is the letter "O" and not
a zero). For example, &010 equals decimal 8 in octal notation.

The dollar sign, "$", in the function name is optional. If it is included, the return data type is String.
If it is omitted the function will return a Variant of vartype 8 (string).

OKButton Statement
See Also Example

Determines the position and size of an OK button in a dialog box.

Syntax OKButton x,y, dx, dy [, .id]

225

where: is:

X,y The position of the OK button relative to the upper left corner of the dialog box.
dx,dy The width and height of the button.
.id An optional identifier for the button.
A dy value of 14 typically accommodates text in the system font.
.id is an optional identifier used by the dialog statements that act on this control.

Use the OKButton statement only between a Begin Dialog and an End Dialog statement.

On...Goto Statement
See Also Example

Branch to a label in the current procedure based on the value of a numeric expression.

Syntax ON numeric-expression GoTo labell [,label2, ...]

where: is:

numeric-expression Any numeric expression that evaluates to a positive number.

labell, label2 A label in the current procedure to branch to if numeric-expression evaluates to 1,
2, etc.

The On ... GoTo statement branches the control to any one of the locations specified by
labell, label2, ...Iabeln, depending on the value of numeric-expression.

If numeric expression evaluates to O or to a number greater than the number of labels following
GoTo, the program continues at the next statement.

If numeric-expression evaluates to a number less than 0 or greater than 255, an "lllegal function
call" error is issued.

On Error Statement
See Also Example Overview

Enables an error-handling routine by specifying the location of the desired routine within the current
procedure.

On Error can also be used to disable an error-handling routine. Unless an On Error statement is
used, any run-time error will be fatal, that is, VCBasic will terminate the execution of the program.

Syntax ON [Local] Error {GoTo label [Resume Next] GoTo 0}

where: is:

label A string used as a label in the current procedure to identify the lines of code that
process errors.

An On Error statement is composed of the following parts:

226

Part Definition

Local Keyword allowed in error-handling routines at the procedure level. Used to
ensure compatibility with other variants of Basic.

GoTo label Enables the error-handling routine that starts at label . If the designated label is
not in the same procedure as the On Error statement, VVCBasic generates an error message.

Resume Next Designates that error-handling code is handled by the statement that immediately
follows the statement that caused an error. At this point, use the Err function to retrieve the
error-code of the run-time error.

GoTo 0 Disables any error handler that has been enabled.

When it is referenced by an On Error GoTo label statement, an error-handler is enabled. Once this
enabling occurs, a run-time error will result in program control switching to the error-handling
routine and "activating" the error handler. The error handler remains active from the time the
run-time error has been trapped until a Resume statement is executed in the error handler.

If another error occurs while the error handler is active, VCBasic will search for an error handler in
the procedure that called the current procedure (if this fails, VCBasic will look for a handler
belonging to the caller's caller, and so on). If a handler is found, the current procedure will terminate,
and the error handler in the calling procedure will be activated.

Itis an error (No Resume) to execute an End Sub or End Function statement while an error handler
is active. The Exit Sub or Exit Function statement can be used to end the error condition and exit
the current procedure.

Open Statement
See Also Example

Opens a file or device for input or output.
Syntax Open filename$ [For mode] [Access access] [lock] As [#] filenumber% [Len = reclen]

where: is:

filename$ A string or string expression for the name of the file to open.
mode One of the following keywords:

Input Get data from the file sequentially.

Output Output data to the file sequentially.

Append Add data to the file sequentially.

Random Access a file with fixed-length records randomly.

Binary Access a file with arbitrary data randomly.

access One of the following keywords:

Read Read data from the file only.

Write Write data to the file only.

Read Write Read or write data to the file.

Lock One of the following keywords to designate access by other processes:
Shared Read or write available on the file.

Lock Read Read data only.

227

Lock Write Write data only.
Lock Read Write No read or write available.

filenumber% An integer or expression containing the integer to assign to the open file (between
1 and 255).

reclen The length of the records (for Random or Binary files only).

A file must be opened before any input/output operation can be performed on it.

If filename$ does not exist, it is created when opened in Append, Binary, Output or Random
modes.

If mode is not specified, it defaults to Random.

If access is not specified for Random or Binary modes, access is attempted in the following order:
Read Write, Write, Read.

If lock is not specified, filename$ can be opened by other processes that do not specify a lock,
although that process cannot perform any file operations on the file while the original process still
has the file open.

You may use the # symbol or not. It has no effect.
Use the FreeFile function to find the next available value for filenumber%.

Reclen is ignored for Input, Output, and Append modes.

OptionButton Statement
See Also Example

Defines the position and text associated with an option button in a dialog box.
Syntax OptionButton x,y, dx, dy, text$ [, .id]

where: is:

X,y The position of the button relative to the upper left corner of the dialog box.
dx,dy The width and height of the button.

text$ A string to display next to the option button. If the width of this string is greater than dx,
trailing characters are truncated.

.id An optional identifier used by the dialog statements that act on this control.

You must have at least two OptionButton statements in a dialog box. You use these
statements in conjunction with the OptionGroup statement.

A dy value of 12 typically accommodates text in the system font.

To enable the user to select an option button by typing a character from the keyboard, precede the
character in text$ with an ampersand (&).

Use the OptionButton statement only between a Begin Dialog and an End Dialog statement.

OptionGroup Statement
See Also Example

Groups a series of option buttons under one heading in a dialog box.

Syntax OptionGroup .field

228

where: is:

field A value for the option button selected by the user: the value will be 0 when the first option
button is selected, 1 when the for the second button is selected, and so on.

The OptionGroup statement is used in conjunction with OptionButton statements to set
up a series of related options.

The OptionGroup Statement begins the definition of the option buttons and establishes
the dialog-record field that will contain the option selection.

Use the OptionGroup statement only between a Begin Dialog and an End Dialog statement.

Details

Argument Description

field The dialog-record field that will indicate the current option selection. It will contain a value
of zero when the choice associated with the first OptionButton statement is selected, a value of 1
when the choice associated with the second OptionButton statement is chosen, and so on.

Option Base Statement
See Also Example Overview

Specifies the default lower bound to use for array subscripts.
Syntax Option Base lowerBound%

where: is:

lowerBound A number or an expression containing a number for the default lower bound: must
be either O or 1.

If no Option Base statement is specified, the default lower bound for array subscripts will
be 0.

The Option Base statement is not allowed inside a procedure, and must precede any use of arrays in
the module.

Only one Option Base statement is allowed per module.

Option Compare Statement
See Also Example

Specifies the default method for string comparisons: either case-sensitive or case-insensitive.
Syntax Option Compare { Binary | Text }

where: means:

Binary Comparisons are case-sensitive (i.e., lowercase and uppercase letters are different).
Text ~ Comparisons are not case-sensitive.
Binary comparisons compare strings based upon the ANSI character set.

Text comparisons are based upon the relative order of characters as determined by the
country code setting for your system.

229

Option Explicit Statement
See Also Example

Specifies that all variables in a module must be explicitly declared.

Syntax Option Explicit

By default, VCBasic automatically declares any variables that do not appear in a Dim,
Global, Redim, or Static statement. Option Explicit causes such variables to produce a "Variable
Not Declared" error.

PasswordBox Function
See Also Example

Returns a string entered by the user without echoing it to the screen.

Syntax PasswordBox[$](prompt$,[title$] ,[default$] [,xpos% , ypos%])

where: is:

prompt$ A string expression containing the text to show in the dialog box
titlke$ The caption for the dialog box's title bar
default$ The string expression shown in the edit box as the default response.

xpos% , ypos% The position of the dialog box, relative to the upper left corner of the screen.

The PasswordBox function displays a dialog box containing a prompt. Once the user has
entered text, or made the button choice being prompted for, the contents of the box are returned. The
user's keystrokes will not be echoed in the input box.

The length of prompt$ is restricted to 255 characters. This figure is approximate and depends on the
width of the characters used. Note that a carriage return and a line-feed character must be included in
prompt$ if a multiple-line prompt is used.

If either prompt$ or default$ is omitted, nothing is displayed in the corresponding area.

Xpos% determines the horizontal distance between the left edge of the screen and the left border of
the dialog box, measured in dialog box units. Ypos% determines the horizontal distance from the top
of the screen to the dialog box's upper edge, also in dialog box units. If these arguments are not
entered, the dialog box's position defaults to centered roughly one third of the way down the screen.
A horizontal dialog box unit is 1/4 of the average character width in the system font; a vertical dialog
box unit is 1/8 of the height of a character in the system font.

Note: To specify the dialog box's position, you must enter both of these arguments. If you enter one
without the other, the default positioning is used.

Once the user presses Enter, or selects the OK button, PasswordBox returns the text contained in
the password box. If the user selects Cancel, the PasswordBox function returns a null string (""").

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted,
the function will return a Variant of vartype 8 (string).

230

Picture Statement
See Also Example

Defines a picture control in a dialog box
Syntax Picture x,y, dx, dy, filename$, type% [, .id]

where: is:

X,y The position of the picture relative to the upper left corner of the dialog box.
dx,dy The width and height of the picture.

filename$ The name of the bitmap file (a file with .BMP extension) where the picture is
located.

type An integer for the location of the bitmap (0=filename$, 3=Windows Clipboard).

.id An optional identifier used by the dialog statements that act on this control.

The Picture statement can only be used between a Begin Dialog and an End Dialog
statement.

Note: The picture will be scaled equally in both directions and centered if the dimensions of the
picture are not proportional to dx and dy.

If type% is 3, filename$ is ignored.

If the picture is not available (the file filename$ doesn't exist, doesn't contain a bitmap, or there is no
bitmap on the Clipboard), the picture control will display the picture frame and the text "(missing
picture)". This behavior can be changed by adding 16 to the value of type% to total 16 or 19. If
type% is 16 (bitmap) or 19 (clipboard) and the picture is not available, then a runtime error occurs.

Pmt Function
See Also Example

Returns a constant periodic payment amount for an annuity or a loan.

Syntax Pmt (rate, nper, pv, fv, due)

where: is:

rate Interest rate per period.
nper Total number of payment periods.

pv Present value of the initial lump sum amount paid (as in the case of an annuity) or received
(as in the case of a loan).

fv Future value of the final lump sum amount required (as in the case of a savings plan) or
paid (0 as in the case of a loan).

due An integer value for when the payments are due (0O=end of each period, 1= beginning of the
period).

Rate is assumed to be constant over the life of the loan or annuity.

231

If payments are on a monthly schedule, then, for example, rate will be 0.0075 if the annual
percentage rate on the annuity or loan is 9%. [. 09/ 12]

PPmt Function
See Also Example

Returns the principal portion of the payment for a given period of an annuity.

Syntax PPmt (rate, per, nper, pv, fv, due)

where: is:
rate Interest rate per period.
per Particular payment period in the range 1 through nper.

nper Total number of payment periods.

pv Present value of the initial lump sum amount paid (as in the case of an annuity) or received
(as in the case of a loan).

fv Future value of the final lump sum amount required (as in the case of a savings plan) or
paid (0 as in the case of a loan).

due An integer value for when the payments are due (0=end of each period, 1= beginning of the
period).

Rate is assumed to be constant over the life of the loan or annuity. If payments are on a
monthly schedule, then rate will be 0.0075 if the annual percentage rate on the annuity or loan is
9%.

Print Statement
See Also Example

Prints data to an open file or to the screen.
Syntax Print [# filenumber% ,] expressionlist[{; |, }]

where: is:

You may use this symbol or not. It has no effect.
filenumber% An integer expression identifying the open file to use.
expressionlist A numeric, string, and Variant expression containing the list of values to print.

The Print statement outputs data to the specified filenumber%. filenumber% is the number
assigned to the file when it was opened. See the Open statement for more information.

If filenumber% is omitted, the Print statement outputs data to the screen.
If the expressionlist is omitted, a blank line is written to the file.

The values in expressionlist are separated by either a semi-colon (";") or acomma (",") . A
semi-colon indicates that the next value should appear immediately after the preceding one without
intervening white space. A comma indicates that the next value should be positioned at the next
print zone. Print zones begin every 14 spaces.

The optional [{;|,}] argument at the end of the Print statement determines where output for the next
Print statement to the same output file should begin. A semi-colon will place output immediately
after the output from this Print statement on the current line; a comma will start output at the next
print zone on the current line. If neither separator is specified, a CR-LF pair will be generated and
the next Print statement will print to the next line.

232

Special functions Spc and Tab can be used inside Print statement to insert a given number of spaces
and to move the print position to a desired column.

The Print statement supports only elementary VCBasic data types. See Input for more information
on parsing this statement.

PushButton Statement
See Also Example

Defines a custom push button.

Syntax A PushButton x, y, dx, dy , text$ [, .id]
Syntax B Button x, y, dx, dy, text$ [, .id]
where: is:

X,y The position of the button relative to the upper left corner of the dialog box.
dx,dy The width and height of the button.

text$ The name for the push button. If the width of this string is greater than dx, trailing
characters are truncated.

.id An optional identifier used by the dialog statements that act on this control.
A dy value of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this statement in conjunction
with the ButtonGroup statement. The two forms of the statement (Button and PushButton) are
equivalent.

Use the Button statement only between a Begin Dialog and an End Dialog statement.

Put Statement
See Also Example

Writes a variable to a file opened in Random or Binary mode.
Syntax Put [#] filenumber% , [rechnumber&], varname

where: is:

You may use this symbol or not. It has no effect in VCBasic.
filenumber% An integer expression identifying the open file to use.

recnumber& A Long expression containing the record number or the byte offset at which to
start writing.

varname The name of the variable containing the data to write.

Filenumber% is the identifying number assigned to the file when it was opened. See the
Open statement for more information.

Recnumber& is in the range 1 to 2,147,483,647. If recnumber& is omitted, the
next record or byte is written.

Note: The commas before and after recnumber% are required, even if no
recnumber& is specified.

233

Varname can be any variable except Object, Application Data Type or Array
variables (single array elements can be used).

For Random mode, the following apply:

. Blocks of data are written to the file in chunks whose size is equal to the size specified in
the Len clause of the Open statement. If the size of varname is smaller than the record length, the
record is padded to the correct record size. If the size of variable is larger than the record length, an
error occurs.

. For variable length String variables, Put writes two bytes of data that indicate the length of
the string, then writes the string data.

. For Variant variables, Put writes two bytes of data that indicate the type of the Variant,
then it writes the body of the Variant into the variable. Note that Variants containing strings contain
two bytes of type information, followed by two bytes of length, followed by the body of the string.

. User defined types are written as if each member were written separately, except no
padding occurs between elements.

Files opened in Binary mode behave similarly to those opened in Random mode
except:

o Put writes variables to the disk without record padding.

. Variable length Strings that are not part of user defined types are not preceded by the two
byte string length.

PV Function
See Also Example

Returns the present value of a constant periodic stream of cash flows as in an annuity or a loan.

Syntax PV (rate, nper, pmt, fv, due)

where: is:

rate Interest rate per period.
nper Total number of payment periods.
pmt Constant periodic payment per period.

fv Future value of the final lump sum amount required (in the case of a savings plan) or paid
(0 in the case of a loan).

due An integer value for when the payments are due (0=end of each period, 1= beginning of the
period).

Rate is assumed constant over the life of the annuity. If payments are on a monthly
schedule, then rate, for example, will be 0.0075 if the annual percentage rate on the annuity or loan
is 9%. [.09/12]

Randomize Statement
See Also Example

Seeds the random number generator.

234

Syntax Randomize [number%]

where: is:

number% An integer value between -32768 and 32767.

If no number% argument is given, VCBasic uses the Timer function to initialize the
random number generator.

Rate Function
See Also Example

Returns the interest rate per period for an annuity or a loan.

Syntax Rate (nper, pmt, pv, fv, due, guess)

where: is:

nper Total number of payment periods.
pmt Constant periodic payment per period.

pv Present value of the initial lump sum amount paid (as in the case of an annuity) or received
(as in the case of a loan).

fv Future value of the final lump sum amount required (in the case of a savings plan) or paid
(0 in the case of a loan).

due An integer value for when the payments are due (0=end of each period, 1= beginning of the
period)

guess A ballpark estimate for the rate returned.

In general, a guess of between 0.1 (10 percent) and 0.15 (15 percent) would be a reasonable
value for guess.

Rate is an iterative function: it improves the given value of guess over several iterations until the
result is within 0.00001 percent. If it does not converge to a result within 20 iterations, it signals
failure.

ReDim Statement
See Also Example Overview

Changes the upper and lower bounds of a dynamic array's dimensions.

Syntax ReDim [Preserve] variableName (subscriptRange, ...) [As [New] type], ...

where: is:

variableName The variable array name to redimension. It must begin with a letter and contain
only letters, numbers, and underscores. Variable names may also be delimited by brackets. Except
for other brackets, any character may be used inside the brackets.

subscriptRange The new upper and lower bounds for the array.

235

type The type for the data elements in the array.

ReDim re-allocates memory for the dynamic array to support the specified dimensions, and can
optionally re-initialize the array elements. ReDim cannot be used at the module level; it must be
used inside of a procedure.

The Preserve option is used to change the last dimension in the array while maintaining its contents.
If Preserve is not specified, the contents of the array are re-initialized. Numbers will be set to zero
(0). Strings and Variants will be set to empty ().

The subscriptRange is of the format:
[startSubscript To] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base statement can be used to
change the default.

A dynamic array is normally created by using Dim to declare an array without a specified
subscriptRange. The maximum number of dimensions for a dynamic array created in this fashion is
8. If you need more than 8 dimensions, you can use the ReDim statement inside of a procedure to
declare an array that has not previously been declared using Dim or Global. In this case, the
maximum number of dimensions allowed is 60.

The available data types for arrays are: numbers, strings, Variants, records and objects. Arrays of
arrays, dialog box records, and ADTSs are not supported.

If the As clause is not used, the type of the variable can be specified by using a type character as a
suffix to the name. The two different type-specification methods can be intermixed in a single
ReDim statement (although not on the same variable).

The ReDim statement cannot be used to change the number of dimensions of a dynamic array once
the array has been given dimensions. It can only change the upper and lower bounds of the
dimensions of the array. The LBound and UBound functions can be used to query the current
bounds of an array variable's dimensions.

Care should be taken to avoid ReDiming an array in a procedure that has received a reference to an
element in the array in an argument; the result is unpredictable.

Rem Statement
Example
Identifies a line of code as a comment in a VCBasic program. (from REMark)

Syntax A: Rem comment

Syntax B: " comment

where: is:

comment The text of the comment.

Everything from Rem or the single quote (') to the end of the line is ignored by the program.

Metacommands (e.g., SCSTRINGS) must be preceded by the single quote comment form.

236

A comment is text that documents the program. Comments (except for metacommands) have no
effect on the program. If the first character in a comment is a dollar sign ($), the comment will be
interpreted as a metacommand

Reset Statement
See Also Example

Closes all open disk files and writes any data remaining in the operating system buffers to disk.

Syntax Reset

Resume Statement
See Also Example Overview

Halts an error-handling routine and resumes execution.

Syntax A Resume Next
Syntax B Resume label
Syntax C Resume [0]
where: is:

label The label that identifies the statement to go to after handling an error.

When the Resume Next statement is used, control is passed to the statement that
immediately follows the statement in which the error occurred.

When the Resume [0] statement is used, control is passed to the statement in which the error
occurred.

When the Resume label statement is used, control is passed to the statement that immediately
follows the specified label

The location of the error handler that has caught the error determines where execution will resume.
If an error is trapped in the same procedure as the error handler, program execution will resume with
the statement that caused the error. If an error is located in a different procedure from the error
handler, program control reverts to the statement that last called out the procedure containing the
error handler.

Right Function
See Also Example

Returns a string of a specified number of characters copied from the end of another string.

Syntax Right[$](string$, length%)

where: is:

string$ A string or expression containing the string to copy.

length% The number of characters to copy.

237

If length% is greater than the length of string$, Right returns the whole string.

Right accepts any type of string$, including numeric values, and will convert the input value to a
string.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If it is
omitted, the function will return a Variant of vartype 8 (string).

If the value of string$ is NULL, a Variant of vartype 1 (Null) is returned.

To obtain a string of a specified number of bytes, copied from the end of another string, use the
RightB function.

RmDir Statement
See Also Example

Removes a directory.
Syntax RmDir path$

where: is:

path$ A string expression identifying the directory to remove.
The syntax for path$ is:
[drive:] [\] directory [\directory]
The drive argument is optional. The directory argument is a directory name.

The directory to be removed must be empty, except for the working (.) and parent (..) directories.

Rnd Function
See Also Example

Returns a single precision random number between 0 and 1.
Syntax Rnd [(number!)]

where: is:

number! A numeric expression to specify how to generate the random numbers. (<O=use the number
specified, >0=use the next number in the sequence, 0=use the number most recently generated.)

If number! is omitted, Rnd uses the next number in the sequence to generate a random
number.

Rnd will generate the same sequence of random numbers each time it is executed unless the random
number generator is re-initialized by the Randomize statement.

Rset Statement
See Also Example

Right aligns one string inside another string.
Syntax Rset string$ = string-expression

where: is:

238

string$ The string to contain the right-aligned characters.
string-expression The string containing the characters to put into string$.

If string$ is longer than string-expression, the leftmost characters of string$ are replaced
with spaces.

If string$ is shorter than string-expression, only the leftmost characters of string-expression are
copied.

Rset cannot be used to assign variables of different user-defined types.

RTrim Function
See Also Example

Copies a string and removes any trailing spaces.
Syntax RTrim[$](string$)

where: is:

string$ An expression that evaluates to a string.

RTrim accepts any type of string including numeric values and will convert the input
value to a string.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If it is
omitted the function will return a Variant of vartype 8 (string). If the value of string is NULL, a
Variant of vartype 1 (Null) is returned.

Second Function
See Also Example

Returns an integer from 0 to 59 to indicate the second component of a date-time value.

Syntax Second(time)

where: is:

time An expression containing a date time value.

Second accepts any type of time including strings and will attempt to convert the input
value to a date value. If it cannot convert it, a run-time error occurs.

The return value is a Variant of vartype 2 (integer). If the value of time is NULL, a Variant of
vartype 1 (Null) is returned.

Seek Function
See Also Example

Returns the current file position for an open file.
Syntax Seek(filenumber%)

where: is:

filenumber% An integer expression identifying an open file to query.

Filenumber% is the number assigned to the file when it was opened. See the Open
statement for more information.

239

For files opened in Random mode, Seek returns the number of the next record to be read or written.
For all other modes, Seek returns the file offset for the next operation. The first byte in the file is at
offset 1, the second byte is at offset 2, etc.

The return value is a Long.

Seek Statement
See Also Example

Sets the position within an open file for the next read or write operation.
Syntax Seek [#] filenumber% , position&

where: is:

filenumber% An integer expression identifying an open file to query.

position& A numeric expression for the starting position of the next read or write operation
(record number or byte offset).

If you write to a file after seeking beyond the end of the file, the file's length is extended.
VCBasic will return an error message if a Seek operation is attempted that specifies a negative or
Zero position.

Filenumber% is an integer expression identifying the open file to Seek in. See the Open statement
for more details.

For files opened in Random mode, position& is a record number; for all other modes, position& is
a byte offset. Position& is in the range 1 to 2,147,483,647. The first byte or record in the file is at
position 1, the second is at position 2, etc.

Select Case Statement
See Also Example

Executes one branch a series of statements, depending on the value of an expression.
Syntax Select Case testexpression
[Case expressionlist
[statement_block]]
[Case expressionlist

[statement_block]]

[Case Else
[statement_block]]
End Select

where: is:

testexpression Any expression containing a variable to test.
expressionlist ~ One or more expressions that contain a possible value for testexpression.

statement_block The statements to execute if testexpression equals expressionlist.

240

When there is a match between testexpression and one of the values in expressionlist, the
statement_block following the Case clause is executed. When the next Case clause is reached,
execution control goes to the statement following the End Select statement.

The expressionlist(s) can be a comma-separated list of expressions of the
following forms:

. expression
. expression To expression
. Is comparison_operator expression

The type of each expression must be compatible with the type of testexpression.

Note that when the To keyword is used to specify a range of values, the smaller
value must appear first.

The comparison_operator used with the Is keyword is one of: <, >, =, <=, >= <>,

Each statement_block can contain any number of statements on any number of
lines.

SendKeys Statement
See Also Example

Send keystrokes to an active Windows application.

Syntax SendKeys string$ [, wait%]

where: is:
string$ An expression containing the characters to send.
wait% A numeric expression to determine whether to wait until all keys are processed

before continuing program execution (-1=wait, 0O=don't wait).
The keystrokes are represented by characters of string.
The default value for wait is 0 (FALSE).

SendKeys on the IBM does not wait for the keyboard to unlock before processing the keys; this can
cause characters to be dropped or lost.

SendKeys can send keystrokes only to the currently active application. Therefore, you have to use
the AppActivate or AppClassActivate statement to activate an application before sending keys
(unless it is already active).

To specify an ordinary character, enter this character in the string. For example, to send character
'a' use "a" as string. Several characters can be combined in one string: string "abc" means send 'a’,
'b', and 'c'.

To specify that Shift, Alt, or Control keys should be pressed simultaneously with a character,
prefix the character with

+ to specify Shift
% to specify Alt
n to specify Control.

Parentheses can be used to specify that the Shift, Alt, or Control key should be pressed with a group
of characters. For example, "%(abc)" is equivalent to "%a%b%c".

241

Since '+, '%', "M '("and ")’ characters have special meaning to SendKeys, they must be enclosed in
braces if they need to be sent with SendKeys. For example string "{%}" specifies a percent
character '%'.

Other characters that need to be enclosed in braces are '~' which stands for a newline or "Enter
if used by itself and braces themselves: use {{} to send '{' and {}} to send '}". Brackets '['and ']’ do
not have special meaning to SendKeys but might have special meaning in other applications,
therefore, they need to be enclosed inside braces as well.

To specify that a key needs to be sent several times, enclose the character in braces and specify

the number of keys sent after a space: for example, use {X 20} to send 20 'X' characters.

To send one of the non-printable keys use a special keyword inside braces:

Key to Send Keyword
Backspace {BACKSPACE} or {BKSP} or {BS}
Break {BREAK}
Caps Lock {CAPSLOCK}
Clear {CLEAR}
Delete {DELETE} or {DEL}
Down Arrow {DOWN}
End {END}
Enter {ENTER}
Esc {ESCAPE} or {ESC}
Help {HELP}
Home {HOME}
Insert {INSERT}
Left Arrow {LEFT}
Num Lock The NumLock key and processing is not currently enabled within
Windows operating systems.
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}

To send one of the function keys F1-F15, simply enclose the name of the key inside braces. For

example, to send F5 use "{F5}"

Note that special keywords can be used in combination with +, %, and ~. For example: %{TAB}
means Alt-Tab. Also, you can send several special keys in the same way as you would send several

normal keys: {UP 25} sends 25 Up arrows.

242

SendKeys cannot be used to send keys to an application that was not designed to run under
Windows.

Set Statement
See Also Example Overview

Assigns a variable to an OLE2 object.

Syntax Set variableName = expression

where: is:

variableName An object variable or a Variant variable.

expression An expression that evaluates to an object--typically a function, an object member,
or Nothing.

The following example shows the syntax for the Set statement:

Dim OLE2 As Object
Set OLE2 = CreateObject("'spoly.cpoly")
OLEZ2.reset

Note: If you omit the keyword Set when assigning an object variable, VCBasic will try to copy the
default member of one object to the default member of another. This usually results in a runtime
error;

"Incorrect code - tries to copy default member!
OLE2 = GetObject(,"spoly.cpoly™)

Set differs from Let in that Let assigns an expression to a VCBasic variable. For example,

Set 01 =02 will set the object reference.

Let ol =02 will set the value of the default member.
SetAttr Statement

See Also Example

Sets the attributes for a file.

Syntax SetAttr pathname$, attributes%

where: is:
pathname$ A string expression containing the filename to modify.
attributes % An integer containing the new attributes for the file.

243

Wildcards are not allowed in pathname$.
If the file is open, you can modify its attributes, but only if it is opened for Read access.

These are the attributes that can be modified:

Value Meaning
0 Normal file
1 Read-only file
2 Hidden file
4 System file
32 Archive - file has changed since last backup

SetField Function [VCBasic Extension]*
See Also Example

Replaces a field within a string and returns the modified string.

Syntax SetField[$](string$, field_number%, field$, separator_chars$)

where: is:

string$ A string consisting of a series of fields, separated by separator_char$.
field_number% An integer for the field to replace within string$.
field$ An expression containing the new value for the field.

separator_char$ A string containing the character(s) used to separate the fields in string$.

separator_char$ can contain multiple separator characters, . If more than one separator character
was specified (in separator_chars$), the first one will be used as the separator character.

The field_number% starts with 1. If field_number% is greater than the number of fields in the string,
the returned string will be extended with separator characters to produce a string containing the
specified number of fields.

It is legal for the new field$ value to be a different size than the old value.

*VCBasic offers a number of extensions that are not included in Visual Basic.

Sgn Function
See Also Example

Returns a value indicating the sign of a number — positive, negative, or zero.

Syntax Sgn(humber)

244

where: is:

number An expression for the number to evaluate

The value that the Sgn function returns depends on the sign of number.
For numbers > 0, Sgn (number) returns 1.
For numbers = 0, Sgn (number) returns 0.

For numbers < 0, Sgn (number) returns -1.

Shell Function
See Also Example

Starts an executable program and returns its task ID.
Syntax Shell(pathname$, [windowstyle%])

where: is:

pathname$ The name of the program to execute
windowstyle% An integer value for the style of the program’s window (1-7).

Shell returns the task ID for the program, which is a unique number that identifies the
running program.

Pathname$ can be the name of any valid .COM, .EXE., .BAT, or .PIF file.
Arguments or command line switches can be included. If pathname$ is not a valid executable file
name, or if Shell cannot start the program, an error message occurs.

Windowstyle% is one of the following values:

Value Window Style

1 Normal window with focus

2 Minimized with focus

3 Maximized with focus

4 Normal window without focus
7 Minimized without focus

If windowstyle% is not specified, the default of windowstyle% = 1 is assumed
(normal window with focus).

Sin Function
See Also Example

Returns the sine of an angle specified in radians.

Syntax Sin(number)

where: is:

number An expression containing the angle in radians.

245

The return value will be between -1 and 1.
The return value is single-precision if the angle is an integer, currency or single-precision value.
The return value is double precision for a long, Variant or double-precision value.
The angle must be specified in radians, and can be either positive or negative.

To convert degrees to radians, multiply by (P1/180). The value of PI is 3.14159.

Space Function
See Also Example

Returns a string of spaces.
Syntax Space[$](number)

where: is:

number A numeric expression for the number of spaces to return.

number can be any numeric data type, but will be rounded to an integer.
number must be between 0 and 32,767.

The dollar sign, "$", in the function name is optional. If included, the return type will be String. If
omitted, the function will return a VVariant of vartype 8 (String).

Spc Function
See Also Example

Prints a number of spaces to file or to the screen.

Syntax Spc(n)

where: is:

n An integer for the number of spaces to output.

The Spc function can only be used inside a Print statement.

When the Print statement is used, the Spc function will use the following rules for determining the
number of spaces to output:

. If n is less than the total line width, Spc outputs n spaces.
. If n is greater than the total line width, Spc outputs n Mod width spaces.
. If the difference between the current print position and the output line width (call this

difference Xx) is less than n or n Mod width, then Spc skips to the next line and outputs n - x spaces.

To set the width of a print line, use the Width statement.

SQLClose Function
See Also Example

Disconnects from an ODBC data source connection that was established by SQLOpen.

246

Syntax SQLClose (connection&)

where: is:

connection& A named argument that must be a long integer, returned by SQLOpen.

The return is a variant. Success returns 0 and the connection is subsequently invalid. If the
connection is not valid, -1 is returned.

SQLError Function
See Also Example

Can be used to retrieve more detailed information about errors that might have occurred when
making an ODBC function call.

Returns errors for the last ODBC function and the last connection.

Syntax SQLError (destination())

where: is:

destination A two dimensional array in which each row contains one error. A named
argument that is required, must be an array of variants.

There is no return value.
The fields are: 1) character string indicating the ODBC error class/subclass,
2) numeric value indicating the data source native error code,

3) text message describing the error.

If there are no errors from a previous ODBC function call, then a 0 is returned in the caller's array at
(1,2).

If the array is not two dimensional or does not provide for the return of the three fields above, then
an error message is returned in the caller's array at (1,1).

SQLExecQuery Function
See Also Example

Executes an SQL statement on a connection established by SQLOpen.

Syntax SQLExecQuery (connection& , query$)

where: is:

247

connection& A named argument, required. A long integer, returned by SQLOpen.

query$ A string containing a valid SQL statement. The return is a variant.

SQLExecQuery returns the number of columns in the result set for SQL SELECT
statements

For UPDATE, INSERT, or DELETE it returns the number of rows affected by the statement.
For any other SQL statement, it returns 0.

If the function is unable to execute the query on the specified data source, or if the connection is
invalid, a negative error code is returned.

If SQLExecQuery is called and there are any pending results on that connection, the pending
results are replaced by the new results.

SQLGetSchema Function
See Also Example

Returns a variety of information, including information on the data sources available, current user
ID, names of tables, names and types of table columns, and other data source/database related
information.

Syntax SQLGetSchema (connection& , action% , qualifier$, ref())

where: is:

connection A long integer returned by SQLOpen.
action% Required.
qualifier$ Required.

ref() A variant array for the results appropriate to the action requested, must be an array even if
only one dimension with one element. The return is a variant.

A negative return value indicates an error. A -1 is returned if the requested information cannot be
found or if the connection is not valid. The destination array must be properly dimensioned to
support the action or an error will be returned. Actions 2 and 3 are not currently supported. Action 4
returns all tables and does not support the use of the qualifier. Not all database products and ODBC
drivers support all actions.

Action Meaning

1 List of available datasources (dimension of ref() is one)

2 List of databases on the current connection (not supported)

3 List of owners in a database on the current connection (not supported)

4 List of tables on the specified connection

5 List of columns in a the table specified by qualifier. (ref() must be two
dimensions). Returns column name and SQL data type.

6 The user ID of the current connection user.

7 The name of the current database.

248

8 The name of the data source for the current connection.

9 The name of the DBMS the data source users (e.g., Oracle).
10 The server name for the data source.

11 The terminology used by the data source to refer to owners.

12 The terminology used by the data source to refer to a table.

13 The terminology used by the data source to refer to a qualifier.

14 The terminology used by the data source to refer to a procedure.

SQLOpen Function
See Also Example

Establishes a connection to an ODBC data source specified in connectStr.
Returns a connection ID in the return value and the completed connection string in outputStr.

If the connection cannot be established, then a negative number ODBC error is returned.

Syntax SQLOpen (connectStr$, outputStr$, prompt%)

where: is:
connectStr A named argument, a required parameter.
outputStr A variable to contain the returned connection string. Optional

prompt Specifies when the driver dialog box is displayed. Optional.

The content of connectStr is described in the Microsoft Programmer's Reference Guide for ODBC.
An example string might be "DSN=datasourcename; UID=myid; PWD=mypassword". The return
must be a long.

If prompt is omitted, SQLOpen uses 2 as the default.

Prompt Value _Meaning

1 Driver dialog is always displayed.

2 Driver dialog is displayed only when the specification is not sufficient to make the
connection.

3 The same as 2, except that dialogs that are not required are grayed and cannot be modified.

4 Driver dialog is not displayed. If the connection is not successful, an error is returned.

SQLRequest Function
See Also Example

Establishes a connection to the data source specified in connectionStr, executes the SQL statement
contained in query, returns the results of the request in the ref() array, and closes the connection.

Syntax SQLRequest(connectionStr$, query$, outputStr$, prompt% , columnNames% , ref())

249

where: is:

connectionStr$ A required argument.

query$ A required argument.

outputStr$ A variable to contain the completed connection string.

prompt% An integer that specifies when driver dialog boxes are displayed (see SQLOpen).

columnNames% An integer with a value of 0 or nonzero. When columnNames is nonzero, column
names are returned as the first row of the ref() array. If columnNames is omitted, the default is 0.

ref() Arequired argument that is a two dimensional variant array.

In the event that the connection cannot be made, the query is invalid, or other error
condition, a negative number error is returned.

In the event the request is successful, the positive number of results returned or rows affected is
returned. Other SQL statements return 0.

The arguments are named arguments. The return is a variant.

SQLRetrieve Function
See Also Example

Fetches the results of a pending query on the connection specified by connection and returns the
results in the destination() array.

Syntax SQLRetrieve(connection& , destination() , [maxColumns% , maxRows% ,
columnNames% , rowNumbers% , fetchFirst%])

where: is:

connection& A long.
destination() A two dimensional variant array.

maxColumns% An integer and an optional parameter used to specify the number of columns to be
retrieved in the request.

maxRows% An integer and an optional parameter used to specify the number of rows to be
retrieved in the request.

columnNames% An integer and an optional parameter; defaults to 0.
rowNumbers% An integer and an optional parameter; defaults to 0.

fetchFirst% An integer and an optional parameter, defaults to 0.

The return value is the number of rows in the result set or the maxRows requested.

If the function is unable to retrieve the results on the specified connection, or if there are not results
pending, -1 is returned. If no data is found, the function returns 0.

The arguments are named arguments. The return is a variant.

250

If maxColumns or maxRows are omitted, the array size is used to determine the maximum number of
columns and rows retrieved, and an attempt is made to return the entire result set. Extra rows can be
retrieved by using SQLRetrieve again and by setting fetchFirst to 0. If maxColumns specifies fewer
columns than are available in the result, SQLRetrieve discards the rightmost result columns until
the results fit the specified size.

When columnNames is nonzero, the first row of the array will be set to the column names as
specified by the database schema. When rowNumbers is nonzero, row numbers are returned in the
first column of destination(). SQLRetrieve will clear the user's array prior to fetching the results.

When fetchFirst is nonzero, it causes the result set to be repositioned to the first row if the database
supports the function. If the database does not support repositioning, the result set -1 error will be
returned.

If there are more rows in the result set than can be contained in the destination() array or than have
been requested using maxRows, the user can make repeated calls to SQLRetrieve until the return
value is 0.

SQLRetrieveToFile Function
See Also Example

Fetches the results of a pending query on the connection specified by connection& and stores them
in the file specified by destination$.

Syntax SQLRetrieveToFile(connection& , destination$ [, columnNames% , columnDelimiter$]

)

where: is:

connection& A required argument. A long integer

destination$ A required argument. A string containing the full path and filename to be used for
storing the results.

columnNames% An integer; when nonzero, the first row of the file will be set to the column names
as specified by the database schema. If zero, column names are not returned. If omitted, the default
is 0.

columnDelimiter$ Specifies the string to be used to delimit the fields within each row. If
columnDelimiter is omitted, a horizontal tab is used to delimit fields.

Upon successful completion of the operation, the return value is the number of rows in the
result set. If the function is unable to retrieve the results on the specified connection, or if there are
not results pending, --1 is returned.

The arguments are named arguments. The return is a variant.

Sqgr Function
See Also Example

Returns the square root of a number.
Syntax Sqr(number)

where: is:

number An expression containing the number to use.

251

The return value is single-precision for an integer, currency or single-precision numeric
expression, double precision for a long, Variant or double-precision numeric expression.

Static Statement
See Also Example

Declares variables and allocate storage space within procedures.
Syntax Static variableName [As type] [,variableName [As type]] ...

where: is:

variableName The name of the variable to declare.
type The data type of the variable.

Variables declared with the Static statement retain their value as long as the program is
running. The syntax of Static is exactly the same as the syntax of the Dim statement.

All variables of a procedure can be made static by using the Static keyword in a
definition of that procedure See Function or Sub for more information.

StaticComboBox Statement
See Also Example

Creates a combination of a list of choices and a text box.

Syntax A StaticComboBox x , y, dx, dy , text$, .field
Syntax B StaticComboBox x , y, dx, dy , stringarray$() , .field
where: is:

X,y The upper left corner coordinates of the list box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the combo box in which the user enters or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.

field The name of the dialog-record field that will hold the text string entered in the text box or
chosen from the list box.

The StaticComboBox statement is equivalent to the ComboBox or DropComboBox statement,
but the list box of StaticComboBox always stays visible. All dialog functions and statements that
apply to the ComboBox apply to the StaticComboBox as well.

The x argument is measured in 1/4 system-font character-width units. The y argument is measured in
1/8 system-font character-width units. (See Begin Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin Dialog statement is
executed. The arguments in the text$ string are entered as shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

The string in the text box will be recorded in the field designated by the .field argument when the
OK button (or any pushbutton other than Cancel) is pushed. The field argument is also used by the
dialog statements that act on this control.

Use the StaticComboBox statement only between a Begin Dialog and an End Dialog statement.

252

Stop Statement
See Also Example

Halts program execution.
Syntax Stop

Stop statements can be placed anywhere in a program to suspend its execution. Although the Stop
statement halts program execution, it does not close files or clear variables.

Str Function
See Also Example

Returns a string representation of a number.

Syntax Str[$](number)

where: is:

number The number to be represented as a string.

The precision in the returned string is single-precision for an integer or single-precision numeric
expression, double precision for a long or double-precision numeric expression, and currency
precision for currency. Variants return the precision of their underlying vartype.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted,
the function will return a VVariant of vartype 8 (String).

StrComp Function
See Also Example

Compares two strings and returns an integer specifying the result of the comparison.

Syntax StrComp(string1$, string2$ [, compare%])

where: is:

string1$ Any expression containing the first string to compare.
string2$ The second string to compare.

compare% An integer for the method of comparison (0=case-sensitive, 1=case-insensitive).

StrComp returns one of the following values:

Value Meaning

-1 stringl$ < string2$
0 stringl$ = string2$
1 stringl$ > string2$

253

Null Either stringl$ or string2$ or both = Null

If compare% is 0, a case sensitive comparison based on the ANSI character set sequence is
performed.

If compare% is 1, a case insensitive comparison is done based upon the relative order of characters
as determined by the country code setting for your system.

If compare% is omitted, the module level default as specified with Option Compare is used.

The stringl and string2 arguments are both passed as Variants. Therefore, any type of expression is
supported. Numbers will be automatically converted to strings.

String Function
See Also Example

Returns a string consisting of a repeated character.

Syntax A String[$](number , Character%)

Syntax B String[$] (number , string-expression$)
where: is:

number Specifies the length of the string to be returned.

Character% A numeric expression that contains an integer for the decimal ANSI code of the
character to use.

string-expression$ A string argument, the first character of which becomes the repeated
character.

number must be between 0 and 32,767.
Character% is a numeric expression that VCBasic will evaluate as an integer from 0 to 255.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted,
the function returns a Variant of vartype 8 (String).

Sub ... End Sub Statement
See Also Example

Defines a subprogram procedure.

Syntax [Static] [Private] Sub name [([Optional] parameter [As type] , ...)]

End Sub

where: is:

name The name of the subprogram.

parameter A comma-separated list of parameter names.
Type A data type for parameter

254

A call to a subprogram stands alone as a separate statement. (See the Call statement). Recursion is
supported.

The data type of a parameter can be specified by using a type character or by using the As clause.
Record parameters are declared by using an As clause and a type that has previously been defined
using the Type statement. Array parameters are indicated by using empty parentheses after the
parameter. The array dimensions are not specified in the Sub statement. All references to an array
within the body of the subprogram must have a consistent number of dimensions.

If a parameter is declared as Optional, its value can be omitted when the function is called. Only
Variant parameters can be declared as optional, and all optional parameters must appear after all
required parameters in the Sub statement. The function IsMissing must be used to check whether an
optional parameter was omitted by the user or not. See the Call statement for more information on
using named parameters.

The procedure returns to the caller when the End Sub statement is reached or when an Exit Sub
statement is executed.

The Static keyword specifies that all the variables declared within the subprogram will retain their
values as long as the program is running, regardless of the way the variables are declared.

The Private keyword specifies that the procedures will not be accessible to functions and
subprograms from other modules. Only procedures defined in the same module will have access to a
Private subprogram.

VVCBasic procedures use the call by reference convention. This means that if a procedure assigns a
value to a parameter, it will modify the variable passed by the caller.

The MAIN subprogram has a special meaning. In many implementations of Basic, MAIN will be
called when the module is "run". The MAIN subprogram is not allowed to take arguments.

Use Function to define a procedure that has a return value.

Tab Function
See Also Example

Moves the current print position to the column specified.

Syntax Tab(n)

where: is:

n The new print position to use.

The Tab function can be only be used inside the Print statement.
The leftmost print position is position number 1.

When the Print statement is used, the Tab function will use the following rules for determining the
next print position:

1. If nis less than the total line width, the new print position is n.

2. If nis greater than the total line width, the new print position is n Mod width .

255

3. If the current print position is greater than n or n Mod width, Tab skips to the next line and sets
the print position to n or n Mod width.

To set the width of a print line, use the Width statement.

Tan Function
See Also Example

Returns the tangent of an angle in radians.
Syntax Tan(number)

where: is:

number An expression containing the angle in radians.
number is specified in radians, and can be either positive or negative.

The return value is single-precision if the angle is an integer, currency or
single-precision value.

The return value is double precision for a long, Variant or double-precision value.

To convert degrees to radians, multiply by P1/180. [The value of Pl is
approximately 3.14159, so for a quick conversion, multiply the number of degrees by 0.0174532.]

Text Statement
See Also Example

Places line(s) of text in a dialog box.

Syntax Textx,y,dx,dy, text$ [, .id]

where: is:

X,y The upper left corner coordinates of the text area, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the text area.
text$ A string containing the text to appear in the text area defined by x , y.

.id An optional identifier used by the dialog statements that act on this control.

If the width of text$ is greater than dx, the spillover characters wrap to the next line. This will
continue as long as the height of the text area established by dy is not exceeded. Excess characters
are truncated.

By preceding an underlined character in text$ with an ampersand (&), you enable a user to press the
underlined character on the keyboard and position the cursor in the combo or text box defined in the
statement immediately following the Text statement.

Use the Text statement only between a Begin Dialog and an End Dialog statement.

TextBox Statement
See Also Example

Creates a text box in a dialog box.

256

Syntax TextBox [NoEcho] x, vy, dx, dy, .field

where: is:

NoEcho Often used for passwords, this keyword displays asterisks (*) instead of thel characters
entered.

X,y The upper left corner coordinates of the text box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the text box area.
field The name of the dialog record field to hold the text string.

A dy value of 12 will usually accommaodate text in the system font.

When the user selects the OK button, or any pushbutton other than cancel, the text string entered in
the text box will be recorded in .field.

Use the TextBox statement only between a Begin Dialog and an End Dialog statement.

Time Function
See Also Example

Returns a string representing the current time.

Syntax Time[$]

The Time function returns an eight character string. The format of the string is
""hh:mm:ss" where hh is the hour, mm is the minutes and ss is the seconds. The hour is specified in
military style [a 24-hour clock], and ranges from 0 (midnight) to 23 (11 pm).

The dollar sign, "$", in the function name is optional. If specified, the return type is String. If
omitted, the function will return a VVariant of vartype 8 (String).

Time Statement
See Also Example

Sets the current system time.

Syntax Time[$] = expression

where: is:

expression An expression that evaluates to a valid time.

When Time (with the dollar sign "$") is used, the expression must evaluate to a string of
one of the following forms:

257

hh Set the time to hh hours 0 minutes and 0 seconds
hh:mm Set the time to hh hours mm minutes and 0 seconds.

hh:mm:ss Set the time to hh hours mm minutes and ss seconds

Time$ uses a 24-hour clock [military time]. Thus, 6:00 P.M. must be entered as 18:00:00.
Time (without the $) accepts both 12 and 24 hour clocks.

If the dollar sign '$' is omitted, expression can be a string containing a valid date, a Variant of
vartype 7 (date) or 8 (string).

If expression is not already a Variant of vartype 7 (date), Time attempts to convert it to a valid time.

Time recognizes time separator characters as defined in the International section of the Windows
Control Panel.

Timer Function
See Also Example

Returns the number of seconds that have elapsed since midnight.
Syntax Timer

The Timer function can be used in conjunction with the Randomize statement to seed the
random number generator.

TimeSerial Function
See Also Example

Returns a time as a a variant of vartype 7 (date/time) for a specific hour, minute, and second.
Syntax TimeSerial(hour%, minute%, second%)

where: is:

hour% A numeric expression for an hour (0-23).
minute%A numeric expression for a minute (0-59).
second% A numeric expression for a second (0-59).

You also can specify relative times for each argument by using a numeric expression representing
the number of hours, minutes, or seconds before or after a certain time.
For example: (5 - 2, 20 + 10, 0) represents 3:30 am.

TimeValue Function
See AlsoExample

Returns a time value for a specified string.
Syntax TimeValue(time$)

where: is:

time$ A string representing a valid date time value.

258

The TimeValue function returns a Variant of vartype 7 (date/time) that represents a time between
0:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59 P.M., inclusive.

Trim Function
See Also Example

Returns a copy of a string after removing all leading and trailing spaces.

Syntax Trim[$](string)

where: is:

string An expression containing the string to trim.

Trim$ accepts expressions of type String. Trim [without the $] accepts any type of string
including numeric values and will convert the input value to a string.

The dollar sign, "$", in the function name is optional. If specified, the return type is String. If
omitted, the function typically returns a Variant of vartype 8 (String). If the value of string is
NULL, a Variant of vartype 1 (Null) is returned.

Type Statement
See Also Example

Declares a user-defined type. [A user-defined type is sometimes referred to as a record type or a
structure type.]

Syntax Type userType
fieldl As typel
field2 As type2

End Type

where: is:

userType A user-defined type.
fieldl , field2 The name of a field in the user-defined type.

typel , type2 A data type: Integer, Long, Single, Double, Currency, String, String*length,
Variant, or another user-defined type.

The user-defined type declared by Type can then be used in the Dim statement to declare a
record variable.

field cannot be an array. However, arrays of records are allowed.

The Type statement is not valid inside of a procedure definition. To access the fields of a record, use
notation of the form:

recordName.fieldName
To access the fields of an array of records, use notation of the form:

arrayName(index).fieldName

259

Typeof Function
See Also Example

Returns a value indicating whether an object is of a given class (-1=TRUE, 0=FALSE).

Syntax If Typeof objectVariable Is className then. . .

where: is:

objectVariable The object to test.

className The class to compare the object to.

Typeof can only be used in an If statement and cannot be combined with other boolean operators.
That is, Typeof can only be used exactly as shown in the syntax above.

To test if an object does not belong to a class, use the following code structure:
If Typeof objectVariable Is className Then
Else
Rem Perform some action.
End If

UBound Function
See Also Example

Returns the upper bound of the subscript range for the specified array.

Syntax UBound(arrayname [, dimension])

where: is:
arrayname The name of the array to use.
dimension The dimension to use.

The dimensions of an array are numbered starting with 1. If the dimension is not specified, 1 is used
as a default.

LBound can be used with UBound to determine the length of an array.

UCase Function
See Also Example

Returns a copy of a string after converting all lower case letters to upper case.

Syntax UCase[$](string)

where: is:

260

string An expression that evaluates to a string.

The translation is based on the country specified in the Windows Control Panel.

Ucase$ accepts expressions of type string. UCase accepts any type of argument and will convert the
input value to a string.

The dollar sign, "$", in the function name is optional. If specified, the return type is string. If
omitted, the function typically returns a Variant of vartype 8 (String). If the value of string is Null,
a Variant of vartype 1 (Null) is returned.

Unlock Statement
See Also Example

Controls access to an open file.
Syntax Unlock [#]filenumber% [, { record& | [start&] To end& }]

where: is:

filenumber% An integer expression identifying the open file.
record& Number of the starting record to unlock.
start& Number of the first record or byte offset to lock/unlock.
end& Number of the last record or byte offset to lock/unlock.
The filenumber% is the number used in the Open statement of the file.

For Binary mode, start&, and end& are byte offsets. For Random mode, start&, and end& are
record numbers. If start& is specified without end&, then only the record or byte at start& is locked.
If To end& is specified without start&, then all records or bytes from record number or offset 1 to
end& are locked.

For Input, Output and Append modes, start&, and end& are ignored and the whole file is locked.

Lock and Unlock always occur in pairs with identical parameters. All locks on open files must be
removed before closing the file, or unpredictable results will occur.

Val Function
See Also Example

Returns the numeric value of the first number found in the specified string.
Syntax Val(string$)

where: is:

string$ A string expression containing a number.

Spaces in the source string are ignored. If the first number found is zero, or if no number is
found, Val retuns zero.

VarType Function
See Also Example Overview

Returns a value (0-9) that specifies the Variant type of the Variant variable.

Syntax VarType(varname)

261

where: is:

varname The Variant variable to use.

The value returned by VarType is one of the following:

Ordinal Representation

0 (Empty)
Null
Integer
Long
Single
Double
Currency
Date
String

© 00 N o o B~ w N -

Object

Weekday Function
See Also Example

Returns the day of the week for the specified date-time value.
Syntax Weekday(date)

where: is:

date An expression containing a date time value.

The Weekday function returns an integer between 1 and 7, inclusive (1=Sunday,
7=Saturday).

Weekday accepts any expression, including strings, and attempts to convert the input value to a date
value.
If it cannot convert it, a run-time error occurs.

The return value is a Variant of vartype 2 (Integer). If the value of date is NULL, a Variant of
vartype 1 (Null) is returned.

While ... Wend
See Also Example

Controls a repetitive action. The condition is tested; if it is non-zero (TRUE), the statementblock is
executed. This process is repeated until condition becomes zero (FALSE).

Syntax While condition
statementblock

Wend

262

where: is:

condition An expression that evaluates to TRUE (non-zero) or FALSE (zero).
statementblock A series of statements to execute if condition is TRUE.
The statementblock statements are until condition becomes 0 (FALSE).

The While statement is included in VCBasic for compatibility with older versions of Basic. The Do
statement is a more general and powerful flow control statement.

Width Statement
See Also Example

Sets the output line width for an open file.
Syntax Width [#]filenumber% , width%

where: is:

You may use this symbol or not. It has no effect.
filenumber% An integer expression for the open file to use.

width% An integer expression for the width of the line (0 to 255). [This is the number of characters
to be on a line before a new line is started.]

Filenumber% is the number assigned to the file when it is opened. See the Open statement
for more information.

A value of zero (0) for width% indicates there is no line length limit.

The default width% for a file is zero (0).

With Statement
See Also Example

Executes a series of statements on a specified variable.

Syntax With variable
statement_block
End With

where: is:

variable The variable to be changed by the statements in statement_block.

statement_block The statements to execute.

Variable can be an object or a user-defined type.

With statements can be nested.

Write Statement
See Also Example

Writes data to an open sequential file.

Syntax Write #filenumber% [, expressionlist]

263

where: is:

filenumber% An integer expression for the open file to use.
expressionlist ~ One or more values to write to the file.

The file must be opened in Output or Append mode. Filenumber% is the number assigned
to the file when it is opened. (See the Open statement for more information.)

If expressionlist is omitted, the Write statement writes a blank line to the file.
(See Input for more information.)

Year Function
See Also Example

Returns the year component of a date-time value.
Syntax Year(date)

where: is:

date An expression that can evaluate to a date time value.
The Year function returns an integer between 100 and 9999, inclusive.

Year accepts any type of date, including strings, and will attempt to convert the
input value to a date value. If Year cannot convert it, a run-time error occurs.

The return value is a Variant of vartype 2 (Integer). If the value of date is NULL,
a Variant of vartype 1 (Null) is returned.

Data Types
See Also

Basic is a strongly-typed language. Variables can be declared implicitly on first reference by using a
type character; if no type character is present, the default type of Variant is assumed. Alternatively,
the type of a variable can be declared explicitly with the Dim statement. Data types can also be
specified by using a type character, which is used as a suffix to the name of a function or variable.

The characters are:

$ Dynamic String
% Integer
& Long integer

! Single precision floating point
Double precision floating point

@ Currency exact fixed point

In any case, the variable can only contain data of the declared type. Variables of user-defined type
must be explicitly declared. VCBasic supports standard Basic numeric, string, record and array data.
VCBasic also supports Dialog Box Records and Objects (which are defined by the application).

Arrays

Arrays are created by specifying one or more subscripts at declaration or Redim time. Subscripts
specify the beginning and ending index for each dimension. If only an ending index is specified, the

264

beginning index depends on the Option Base setting. Array elements are referenced by enclosing
the proper number of index values in parentheses after the array name, e.g., arrayname(i,j,k). See
the Dim statement for more information.

Numbers

These are the five numeric types and their ranges; negative numbers are in red.

Typ From To
e
Inte -32,768 32,767
ger
Lon -2,147,483,648 2,147,483,647
g
Sing -3.402823e+38 -1.401298e-45
le
0.0
1.401298e-45 3.402823466e+38
Dou -1.797693134862315d -4.94065645841247d-308
ble +308
0.0
2.2250738585072014d 1.797693134862315d+308
-308
Curr -922,337,203,685,477. 922,337,203,685,477.5807
ency 5808

Numeric values are always signed.

Basic has no true Boolean variables. Basic considers 0 to be FALSE and any other numeric value to
be TRUE. Only numeric values can be used as booleans. Comparison operator expressions always
return O for FALSE and -1 for TRUE.

Integer constants can be expressed in decimal, octal, or hexadecimal notation. Decimal constants are
expressed by simply using the decimal representation. To represent an octal value, precede the
constant with "&Q" or "&0" (e.g., &0177). Note that that is the letter "0" and not a zero. To
represent a hexadecimal value, precede the constant with "&H" or "&h" (e.g., &H8001).

Records

A record, or record variable, is a data structure containing one or more elements, each of which has
a value. Before declaring a record variable, a Type must be defined. Once the Type is defined, the
variable can be declared to be of that type. The variable name should not have a type character
suffix. Record elements are referenced using dot notation, e.g., varname.elementname. Records can
contain elements that are themselves records.

Dialog box records look like any other user-defined data type. Elements are referenced using the
same recname.elementname syntax. The difference is that each element is tied to an element of a
dialog box. Some dialog boxes are defined by the application, others by the user. See the Begin
Dialog statement for more information.

Strings

265

Basic strings can be either fixed or dynamic. Fixed strings have a length specified when they are
defined, and the length cannot be changed. Fixed strings cannot be of 0 length. Dynamic strings
have no specified length. Any string can vary in length from 0 to 32,767 characters. There are no
restrictions on the characters that can be included in a string. For example, the character that has the
ANSI value 0 (zero) can be embedded in strings.

Step 1. Define a dialog box

The Begin Dialog... End Dialog statements define a dialog box. The last parameter to the Begin
Dialog statement is the name of a function, prefixed by a period (.).This function handles
interactions between the dialog box and the user.

The Begin Dialog statement supplies three parameters to your function: an identifier (a dialog
control ID), the action taken on the control, and a value with additional action information. Your
function should have these three arguments as input parameters. See the Begin Dialog...End Dialog
statement for more information.

Step 2: Write a dialog box function

This function defines dialog box behavior. For example, your function could disable a check box,
based on a user's action. The body of the function uses the "Dlg"-prefixed VCBasic statements and
functions to define dialog box actions.

Define the function itself using the Function...End Function statement or declare it using the
Declare statement before using the Begin Dialog statement. Enter the name of the function as the
last argument to Begin Dialog. The function receives three parameters from Begin Dialog and
returns a value. Return a non-zero value to leave the dialog box open after the user clicks a
command button (such as Help).

Step 3: Display the dialog box
You use the Dialog function (or statement) to display a dialog box. The argument to Dialog is a
variable name that you previously dimensioned as a dialog box record. The name of the dialog box
record comes from the Begin Dialog... End Dialog statement. The return values for the Dialog
function determine which key was pressed: -1 for OK, 0 for Cancel, >0 for a command button. If
you use the Dialog statement, it returns an error if the user presses Cancel, which you can then trap
with the On Error statement.

Step 1: Create an object variable to access the application

The Dim statement creates an object variable called "visio" and assigns the application, VISIO, to it.
The Set statement assigns the VISIO application to the variable visio using either GetObject or
CreateObiject. You use GetObiject if the application is already open on the Windows desktop. Use
CreateObject if the application is not open.

Step 2: Use methods and properties to act on objects.
To access an object, property or method, you use this syntax:

appvariable.object.property
appvariable.object.method

For example, visio.document.count is a value returned by the Count method of the Document
object for the VISIO application, which is assigned to the Integer variable doccount.

Alternatively, you can create a second object variable and assign the Document object to it using
VISIO's Document method, as the Set statement shows.

266

Option 1: Trap error within body of code

The On Error statement identifies the line of code to go to in case of an error. In this case, the
Resume Next parameter means execution continues with the next line of code after the error. In this
example, the line of code to handle errors is the If statement. It uses the Err statement to determine
which error code is returned.

Option 2: Trap error using error handler

The On Error statement used here specifies a label to jump to in case of errors. The code segment is
part of the main procedure and uses the Err statement to determine which error code is returned. To
make sure your code doesn't accidentally fall through to the error handler, precede it with an Exit
statement.

Derived Trigonometric Functions

A number of trigonometric functions can be written in Basic using the built-in functions. The
following table lists several of these functions:

Function Computed By:

Secant Sec(x) = 1/Cos(x)

CoSecant CoSec(x) = 1/Sin(x)

CoTangent CoTan(x) = 1/Tan(x)

ArcSine ArcSin(x) = Atn(x/Sqr(-x*x+1))

ArcCosine ArcCos(x) = Atn(-x/Sqr(-x*x+1))+1.5708
ArcSecant ArcSec(x) = Atn(x/Sgr(x*x-1))+Sgn(x-1)*1.5708

ArcCoSecant ArcCoSec(x) = Atn(x/Sgr(x*x-1))+(Sgn(x)-1)*1.5708
ArcCoTangent ArcTan(x) = Atn(x)+1.5708

Hyperbolic Sine HSin(x) = (Exp(x)-Exp(-x))/2

Hyperbolic Cosine HCos(x) = (Exp(x)+Exp(-x))/2

Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/(Exp(X)+Exp(-x))
Hyperbolic Secant HSec(x) = 2/(Exp(X)+Exp(-X))

Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))

Hyperbolic Cotangent HCotan(x) = (Exp(X)+Exp(-X))/(Exp(x)-Exp(-x))
Hyperbolic ArcSine HArcSin(x) = Log(x+Sqgr(x*x+1))

Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqgr(x*x-1))

Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2

Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)
Hyperbolic ArcCoSecant HArcCoSec(x) = Log((Sgn(x)*Sqr(x*x+1)+1)/x)
Hyperbolic ArcCoTangentHArcCoTan(x) = Log((x+1)/(x-1))/2

267

Assert Statement [VCBasic Extension]
Triggers a run-time error if the condition specified is FALSE.

Syntax Assert condition

where: is:

condition A numeric or string expression that can evaluate to TRUE or FALSE.

The Assert statement should be used by VCBasic clients to handle an application-specific error. An
assertion error cannot be trapped by the On Error statement.

Use the Assert statement to ensure that a procedure is performing in the expected manner.

CCur Function
See Also Example

Converts an expression to the data type Currency.

Syntax CCur(expression)
where: is:
expression Any expression that evaluates to a number.

CCur accepts any type of expression. Numbers that do not fit in the Currency data type result in an
"Overflow" error. Strings that cannot be converted result in a "Type Mismatch" error.

Variants containing null result in an "lllegal Use of Null* error.

CDbl Function
See Also Example

Converts an expression to the data type Double.
Syntax CDbl(expression)

where: is:

expression Any expression that evaluates to a number.
CDbl accepts any type of expression.

Strings that cannot be converted to a double-precision floating point result in a "Type Mismatch"
error.

Variants containing null result in an "lllegal Use of Null" error.

Chr Function
See Also Example

Returns the one-character string corresponding to a character code.
Syntax Chr[$](charcode)

where: is:

charcode An integer representing the character to be returned.

The dollar sign, "$", in the function name is optional. If specified, the return type is String.
If omitted, the function will return a Variant of vartype 8 (string).

To obtain a byte representing a given character, use ChrB.

268

Cint Function
See Also Example

Converts an expression to the data type Integer by rounding.
Syntax ClInt(expression)

where: is:

expression Any expression that can evaluate to a number.

After rounding, the resulting number must be within the range of -32767 to 32767, or an
error occurs.

Strings that cannot be converted to an integer result in a "Type Mismatch" error.

Variants containing null result in an "lllegal Use of Null" error.

ComboBox Statement
See Also Example

Creates a combination text box and list box in a dialog box.

Syntax A ComboBox x,y, dx, dy, text$, .field
Syntax B ComboBox x,y, dx, dy, stringarray$, .field
where: is:

X,y The upper left corner coordinates of the list box, relative to the upper left corner of the
dialog box.

dx,dy The width and height of the combo box in which the user enters or selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.

field The name of the dialog-record field that will hold the text string entered in the text box or
chosen from the list box.

The x argument is measured in 1/4 system-font character-width units. The y argument is
measured in 1/8 system-font character-width units. (See Begin Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin Dialog statement is
executed. The arguments in the text$ string are tab delimited as shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

The string in the text box will be recorded in the field designated by the .field argument when the
OK button (or any pushbutton other than Cancel) is pushed. The field argument is also used by the
dialog statements that act on this control.

Use the ComboBox statement only between a Begin Dialog and an End Dialog statement.

Command Function
See Also Example

Returns the command line specified when the MAIN subprogram was invoked.

Syntax Command[$]

269

After the MAIN subprogram returns, further calls to the Command function will yield an
empty string. This function might not be supported in some implementations of VCBasic.

The dollar sign, "$", in the function name is optional. If specified, the return type is String. If
omitted, the function returns a Variant of vartype 8 (string).

Const Statement
See Also Example

Use the Const statement to declare symbolic constants for use in a VCBasic program. VCBasic is a
strongly typed language. The available data types for constants are numbers and strings.

Syntax [Global] Const constantName [As type]= expression [,constantName [As type]=
expression] ...

where: is:

constantName The variable name to contain a constant value.
type The data type of the constant (Number or String)
expression Any expression that evaluates to a constant number.

Instead of using the As clause, the type of the constant can be specified by using a type
character as a suffix (# for numbers, $ for strings) to the constantName. If no type character is
specified, the type of the constantName is derived from the type of the expression.

If Global is specified, the constant is validated at module load time. If the constant has already been
added to the run-time global area, the constant's type and value are compared to the previous
definition, and the load fails if a mismatch is found. This is useful as a mechanism for detecting
version mismatches between modules.

CreateObject Function
See Also Example Overview

Creates a new OLE2 automation object.
Syntax CreateObject(class)

where: is:

class The name of the application, a period, and the name of the object to be used.

To create an object, you first must declare an object variable, using Dim, and then Set the
variable equal to the new object, as follows:

Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax objectvar.property or
objectvar.method, as follows:

OLE2.reset

Refer to the documentation provided with your OLE2 automation server application for correct
application and object names.

CStrings Metacommand [VCBasic Extension]
See Also Example

Tells the compiler to treat a backslash character inside a string (\) as an escape character.

270

Syntax '$CStrings [Save | Restore]

where: is:

Save Saves the current $Cstrings setting.
Restore Restores a previously saved $CStrings setting.
This treatment of a backslash in a string is based on the 'C' language.

Save and Restore operate as a stack and allow the user to change the setting for a range of the
program without impacting the rest of the program.

The supported special characters are:
Newline (Linefeed) \n

Horizontal Tab\t

Vertical Tab \v
Backspace \b
Carriage Return \r
Formfeed \f
Backslash \\
Single Quote \

Double Quote \"
Null Character \0
The instruction "Hello\r World" is the equivalent of "Hello" + Chr$(13)+"World".
In addition, any character can be represented as a 3-digit octal code or a 3-digit hexadecimal code:
Octal Code \ddd
Hexadecimal Code \xddd

For both hexadecimal and octal, fewer than 3 characters can be used to specify the code as long as
the subsequent character is not a valid (hex or octal) character.

To tell the compiler to return to the default string processing mode, where the backslash character
has no special meaning, use the 'SNoCStrings Metacommand.

CVar Function
See Also Example

Converts an expression to the data type Variant.
Syntax CVar(expression)

where: is:

expression Any expression that can evaluate to a number.
CVar accepts any type of expression.

CVar generates the same result as you would get by assigning the expression to a Variant variable.

CVDate Function
See Also Example

271

Converts an expression to the data type Variant Date.
Syntax CVDate(expression)

where: is:

expression Any expression that can evaluate to a number.
CVDate accepts both string and numeric values.

The CVDate function returns a Variant of vartype 7 (date) that represents a date from January 1,
100 through December 31, 9999. A value of zero represents December 30, 1899. Times are
represented as fractional days.

Date Statement
See Also Example

Sets the system date.
Syntax Date[$] = expression

where: is:

expression A string in one of the following forms:
mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

where mm denotes a month (01-12), dd denotes a day (01-31), and yy or yyyy denotes a year
(1980-2099).

If the dollar sign, "$", is omitted, expression can be a string containing a valid date, a
Variant of vartype 7 (date), or a VVariant of vartype 8 (string).

If expression is not already a Variant of vartype 7 (date), Date attempts to convert it to a valid date
from January 1, 1980 through December 31, 2099. Date uses the Short Date format in the
International section of Windows Control Panel to recognize day, month, and year if a string
contains three numbers delimited by valid date separators. In addition, Date recognizes month
names in either full or abbreviated form.

DDElnitiate Function
See Also Example

Opens a dynamic-data exchange (DDE) channel and returns the DDE channel number (1,2, etc.).
Syntax DDElInitiate(appname$, topic$)

where: is:

appname$ A string or expression for the name of the DDE application to talk to.
topic$ A string or expression for the name of a topic recognized by appname$.
If DDEInitiate is unable to open a channel, it returns zero (0).

Appname$ is usually the name of the application's .EXE file without the .EXE filename extension. If
the application is not running, DDElInitiate cannot open a channel and returns an error. Use Shell to
start an application.

272

Topic$ is usually an open filename. If appname$ doesn't recognize topic$, DDElnitiate generates
an error. Many applications that support DDE recognize a topic named System, which is always
available and can be used to find out which other topics are available. For more information on the
System topic, see DDERequest.

The maximum number of channels that can be open simultaneously is determined by the operating
system and your system’'s memory and resources. If you aren't using an open channel, you should
conserve resources by closing it using DDETerminate.

DDEPoke Statement
See Also Example

Sends data to an application on an open dynamic-data exchange (DDE) channel.
Syntax DDEPoke channel%, item$, data$

where: is:

channel% An integer or expression for the open DDE channel number.
item$ A string or expression for the name of an item in the currently opened topic.
data$ A string or expression for the information to send to the topic.

If channel% doesn't correspond to an open channel, an error occurs.

When you open a channel to an application using DDE Initiate, you also specify a topic, such as a
filename, to communicate with. The item$ is the part of the topic you want to send data to.
DDEPoke sends data as a text string; you cannot send text in any other format, nor can you send
graphics.

If the server application doesn't recognize item$, an error occurs.

DDETerminate Statement
See Also Example

Closes the specified dynamic data exchange (DDE) channel.
Syntax DDETerminate channel%

where: is:

channel% An integer or expression for the open DDE channel number.

To free system resources, you should close channels you aren't using. If channel% doesn't
correspond to an open channel, an error occurs.

Dir Function
See Also Example

Returns a filename that matches the specified pattern.

Syntax Dir[$] [(pathname$ [,attributesdo)]

where: is:
pathname$ A string expression identifying a path or filename.
attributes% An integer expression specifying the file attributes to select.

Pathname$ can include a drive specification and wildcard characters ('?* and *'). Dir
returns the first filename that matches the pathname$ argument. An empty string (") passed as

pathname$ is interpreted as the current directory (same as "."). To retrieve additional matching

273

filenames, call the Dir function again, omitting the pathname$ and attributes% arguments. If no file
is found, an empty string (") is returned.

The default value for attributes% is 0. In this case, Dir returns only files without directory, hidden,
system, or volume label attributes set.

Here are the possible values for attributes%:
Value Meaning

0 return normal files

2 add hidden files

4 add system files

8 return volume label

16 add directories

The values in the table can be added together to select multiple attributes. For example, to list hidden
and system files in addition to normal files set attributes% to 6 (6=2+4).

If attributes% is set to 8, the Dir function returns the volume label of the drive specified in the
pathname$, or of the current drive if drive is not explicitly specified. If volume label attribute is set,
all other attributes are ignored.

The dollar sign, "$", in the function name is optional. If specified the return type is string. If omitted
the function will return a Variant of vartype 8 (string).

Int Function
See Also Example

Returns the integer part of a number.
Syntax Int(number)

where: is:

number Any numeric expression.

For positive numbers, Int removes the fractional part of the expression and returns the
integer part only. For negative numbers, Int returns the largest integer less than or equal to the
expression. For example, Int (6.2) returns 6; Int(-6.2) returns -7.

The return type matches the type of the numeric expression. This includes Variant expressions that
will return a result of the same vartype as input except vartype 8 (string) will be returned as vartype
5 (double) and vartype 0 (empty) will be returned as vartype 3 (long).

$NoCStrings Metacommand [VCBasic Extension]*
See Also Example

Tells the compiler to treat a backslash (\) inside a string as a normal character.
Syntax '$NoCStrings [Save]

where: means:

Save Saves the current '$CStrings setting before restoring the treatment of the backslash (\) to a
normal character.

274

Use the '$CStings Restore command to restore a previously saved setting. Save and

Restore operate as a stack and allow the user to change the "$CStrings setting for a range of the
program without impacting the rest of the program.

Use the "$CStrings metacommand to tell the compiler to treat a backslash (\) inside of a string as an

Escape character.

*VCBasic offers a number of extensions that are not included in Visual Basic.

Now Function
See Also Example

Returns the current date and time.

Syntax Now()

The Now function returns a VVariant of vartype 7 (date) that represents the current date and
time according to the setting of the computer's system date and time.

Help Typographic Conventions

VVCBasic Help uses the following typographic conventions:

To represent:

Statements and
functions

Arguments to
statements or functions

Optional arguments
and/or characters

Required choice for an
argument from a list of
choices

Other Ways to Halt Programs

Help syntax is:

Boldface; initial letter uppercase:

Abs
Len(variable)

All lowercase, italicized letters:

variable, rate, prompt$

Italicized arguments and/or characters
in brackets:

[.caption$], [type$], [$]

A list inside braces, with OR operator
(|) separating choices:

{Goto label | Resume Next | Goto
0}

For ending a program, see Unload Form Method.

If you are debugging a program, see Setting Breakpoints .

275

IsDate Function
See Also Example

Returns -1 (TRUE) if an expression is a valid date, 0 (FALSE) if it is not.

Syntax IsDate(expression)

Where: Is:

expression The expression to be evaluated.

IsDate returns -1 (TRUE) if the expression is of vartype 7 (date) or a string that can be interpreted as
a date.

IsEmpty Function
See Also Example

Returns -1 (TRUE) if a Variant has been initialized. 0 (FALSE) otherwise.

Syntax ISEmpty(expression)

Where: Is:

expression Any expression with a data type of Variant.

IsEmpty returns -1 (TRUE) if the Variant is of vartype 0 (empty).

Any newly-defined Variant defaults to being of Empty type to signify that it contains no initialized
data.

IsNull Function
See Also Example

Returns a value that signifies whether or not an expression has resulted in a null value.

Syntax IsNull(expression)

where: is:

expression Any expression with a data type of Variant.
IsNull returns -1 (TRUE) if a Variant expression contains the Null value, 0 (FALSE) if it does not.

Null Variants have no associated data and serve only to represent invalid or ambiguous results.

Null is not the same as Empty; Empty indicates that a Variant has not yet been initialized.

276

IsNumeric Function
See Also Example

Returns -1 (TRUE) if an expression has a data type of Numeric, 0 (FALSE) otherwise.

Syntax IsNumeric(expression)

where: is:

expression Any valid expression.

IsNumeric returns -1 (TRUE) if the expression is of vartypes 2-6 (numeric) or a string that can be
interpreted as a number; otherwise, it returns 0 (FALSE).

Is Operator
See Also Example Overview

Compares two object expressions and returns -1 (TRUE) if they refer to the same object, and 0
(FALSE) if they do not..

Syntax objectExpression Is objectExpression2

Where: is:
objectexpression Any valid object expression.
objectexpression2 Any other valid object expression.

Is can also be used to test if an object variable has been Set to Nothing.

AppClassActivate Statement

See Also Example
Activates an application window.
Syntax AppClassActivate class [, title]

where: is:

class A string expression for the class name of the application
window to activate.

title An optional string expression for the title-bar name of the
application window to activate.

Class must match the class of the window character for character, but comparison is not
case-sensitive, e.g., "File Manager" is the same as "file manager" or "FILE MANAGER". If no title
is specified and there is more than one window with a name matching class, a window is chosen at
random unless a title is specified. If there is more than one window with a name and title matching
those supplied, a window is chosen at random.

277

AppClassActivate changes the focus to the specified window but does not change whether the
window is minimized or maximized. Use AppClassActivate with the SendKeys statement to send
keys to another application.

Visual CommBasic offers a number of functions that are not included in or recognized by
Microsoft's Visual Basic. These functions and statements are used specifically for terminal
emulation manipulation.

At this time, OutsideView macros created prior to version 6.0 are not compatible with version 6.0 or
later. All future versions of OutsideView, however, will maintain Visual CommBasic
compatilibility to the extent that advances in operating systems allow.

" Abs Function Example

"This example finds the difference between two variables, oldacct and newacct.
Sub main
Dim oldacct, newacct, count
oldacct=InputBox("Enter the oldacct number")
newacct=InputBox("Enter the newacct number")
count=Abs(oldacct-newacct)
MsgBox "The absolute value is: " &count

End Sub

" AppActivate Statement Example

‘This example opens the Windows bitmap file SETUP.BMP in Paint. (Paint must already be open
before running this example. It must also not be minimized.)

Sub main
MsgBox "Opening C:\WINDOWS\SETUP.BMP in Paint."
AppActivate "untitled - Paint"
DoEvents
SendKeys "%FOC:\WINDOWS\SETUP.BMP{Enter}",1
MsgBox "File opened."”

End Sub

" Asc Function Example

‘This example asks the user for a letter and returns its ASCII value.

278

Sub main
Dim userchar
userchar=InputBox("Type a letter:")
MsgBox "The ASC value for " & userchar & " is: "' & Asc(userchar)

End Sub

' Atn Function Example
"This example finds the roof angle necessary for a house with an attic ceiling of 8 feet (at the roof
peak) and a 16 foot span from the outside wall to the center of the house. The Atn function returns
the angle in radians; it is multiplied by 180/PI to convert it to degrees.
Sub main
Dim height, span, angle, PI
P1=3.14159
height=8
span=16
angle=Atn(height/span)*(180/PI)
MsgBox "The angle is " & Format(angle, "##.##") & " degrees”
End Sub

' Beep Statement Example
"This example beeps and displays a message in a box if the variable balance is less than 0. (If you
have a set of speakers hooked up to your computer, you might need to turn them on to hear the
beep.)
Sub main
Dim expenses, balance, msgtext
balance=InputBox("Enter your account balance™)
expenses=1000
balance=balance-expenses
If balance<0 then
Beep
Msgbox "I'm sorry, your account is overdrawn."
Else
Msgbox "Your balance minus expenses is: " &balance

End If

279

End Sub

' Begin Dialog... End Dialog Statement Example

"This example defines and displays a dialog box with each type of item in it: list box, combo box,
buttons, etc.

Sub main

Dim ComboBox1() as String

Dim ListBox1() as String

Dim DropListBox1() as String

ReDim ListBox1(0)

ReDim ComboBox1(0)

ReDim DropListBox1(3)

ListBox1(0)="C:\"

ComboBox1(0)=Dir("C:*.*")

For x=0to 2

DropListBox1(x)=Chr(65+x) & ":"

Next X

Begin Dialog UserDialog 274, 171, "VCBasic Dialog Box™
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
Text 106, 2, 34, 9, "Directory:", .Text2
ListBox 106, 12, 83, 39, ListBox1(), .ListBox2
Text 106, 52, 42, 8, "Drive:", .Text3
DropListBox 106, 64, 95, 44, DropL.istBox1(), .DropListBox1
CheckBox 9, 142, 62, 14, "List .TXT files", .CheckBox1
GroupBox 106, 111, 97, 57, "File Range"
OptionGroup .OptionGroup2

OptionButton 117, 119, 46, 12, "All pages", .OptionButton3
OptionButton 117, 135, 67, 8, "Range of pages", .OptionButton4

Text 123, 146, 20, 10, "From:", .Text6

280

Text 161, 146, 14,9, "To:", .Text7
TextBox 177,146, 13, 12, .TextBox4
TextBox 145, 146, 12, 11, .TextBox5
OKButton 213, 6, 54, 14
CancelButton 214, 26, 54, 14
PushButton 213, 52, 54, 14, "Help", .Pushl

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

' Button Statement Example

"This example defines a dialog box with a combination list box and three buttons.
Sub main
Dim fchoices as String
fchoices="Filel" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "VCBasic Dialog Box"
Text 9,5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
Button 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next

Dialog mydialog

281

If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

'‘ButtonGroup Statement Example

"This example defines a dialog box with a group of three buttons.
Sub main
Begin Dialog UserDialog 34,0,231,140, "VCBasic Dialog Box"
ButtonGroup .bg
PushButton 71,17,88,17, "&Button 0"
PushButton 71,50,88,17, "&Button 1"
PushButton 71,83,88,17, "&Button 2"
End Dialog
Dim mydialog as UserDialog
Dialog mydialog
Msgbox "Button " & mydialog.bg & " was pressed."”
End Sub

' Call Statement Example

"This example calls a subprogram named CREATEFILE to open a file, write the numbers 1 to 10 in
it and leave it open. The calling procedure then checks the file's mode. If the mode is 1 (open for
Input) or 2 (open for Output), the procedure closes the file.

Declare Sub createfile()
Sub main
Dim filemode as Integer
Dim attrib as Integer
Call createfile
attrib=1
filemode=FileAttr(1,attrib)
If filemode=1 or 2 then
MsgBox "File was left open. Closing now."

Close #1

282

End If
Kill "C:\TEMPOQO1"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C\TEMPO001" for Output as #1
For x=1to 10
Write #1, x
Next X

End Sub

' CancelButton Statement Example

"This example defines a dialog box with a combination list box and three buttons.

Sub main

Dim fchoices as String

fchoices="Filel" & Chr(9) & "File2" & Chr(9) & "File3"

Begin Dialog UserDialog 185, 94, "VCBasic Dialog Box"
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then

MsgBox "Dialog box canceled."

283

End If

End Sub

' Caption Statement Example

"This example defines a dialog box with a combination list box and three buttons. The Caption
statement changes the dialog box title to "Example -Caption Statement".

Sub main
Dim fchoices as String
fchoices="Filel" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94
Caption "Example-Caption Statement"
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54,13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

* CCur Function Example

"This example converts a yearly payment on a loan to a currency value with four decimal places. A
subsequent Format statement formats the value to two decimal places before displaying it in a
message box.

Sub main

Dim aprate, totalpay,loanpv

Dim loanfv, due, monthlypay

284

Dim yearlypay, msgtext
loanpv=InputBox("Enter the loan amount: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
aprate=aprate/12
totalpay=InputBox("Enter the total number of pay periods: ")
loanfv=0
Rem Assume payments are made at end of month
due=0
monthlypay=Pmt(aprate,totalpay,-loanpv,loanfv,due)
yearlypay=CCur(monthlypay*12)
msgtext= "The yearly payment is: " & Format(yearlypay, "Currency")
MsgBox msgtext

End Sub

' CDbl Function Example

"This example calculates the square root of 2 as a double-precision floating point value and displays
it in scientific notation.

Sub main
Dim value
Dim msgtext
value=CDbI(Sqr(2))
msgtext= "The square root of 2 is: " & Value
MsgBox msgtext

End Sub

' ChDir Statement Example
"This example changes the current directory to C:\WINDOWS, if it is not already the default.

Sub main

Dim newdir as String

285

newdir="c:\windows"
If CurDir <> newdir then
ChDir newdir
End If
MsgBox "The default directory is now: " & newdir

End Sub

' ChDrive Statement Example

"This example changes the default drive to A:\.
Sub main

Dim newdrive as String

newdrive="A:"

If Left(CurDir,2) <> newdrive then

ChDrive newdrive
End If
MsgBox "The default drive is now " & newdrive

End Sub

' CheckBox Statement Example

"This example defines a dialog box with a combination list box, a check box, and three buttons.
Sub main
Dim ComboBox1() as String
ReDim ComboBox1(0)
ComboBox1(0)=Dir("C:*.*")
Begin Dialog UserDialog 166, 76, "VCBasic Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
CheckBox 10, 39, 62, 14, "List .TXT files", .CheckBox1
OKButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl

End Dialog

286

Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

" Chr Function Example

"This example displays the character equivalent for an ASCII code between 65 and 122 typed by the
user.

Sub main
Dim numb as Integer
Dim msgtext
Dim out
out=0
Do Until out
numb=InputBox("Type a number between 65 and 122:")
If Chr$(numb)>="A" AND Chr$(numb)<="2Z" OR Chr$(numb)>="a" AND _
Chr$(numb)<="z" then
msgtext="The letter for the number " & numb &" is: " & Chr$(numb)
out=1
Elself numb=0 then
Exit Sub
Else
Beep
msgtext="Does not convert to a character; try again."
End If
MsgBox msgtext
Loop
End Sub

287

' CInt Function Example

"This example calculates the average of ten golf scores.
Sub main
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum=0
For x=1to 10
score=InputBox("Enter golf score #"&x &":")
sum=sum-+score
Next X
msgtext=""Your average is: " & Format(ClInt(sum/(x-1)),"General Number")
MsgBox msgtext

End Sub

' Clipboard Example

"This example places the text string "Hello, world." on the Clipboard.
Sub main

Dim mytext as String

mytext="Hello, world."

Clipboard.Settext mytext

MsgBox "The text: "' & mytext & " added to the Clipboard."

End Sub

' CLng Function Example

"This example divides the US national debt by the number of people in the country to find the
amount of money each person would have to pay to wipe it out. This figure is converted to a Long
integer and formatted as Currency.

Sub main
Dim debt As Single
Dim msgtext
Const Populace = 250000000

debt=InputBox("Enter the current US national debt:")

288

msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
MsgBox msgtext

End Sub

' Close Statement Example

"This example opens a file for Random access, gets the contents of one variable, and closes the file
again. The subprogram, CREATEFILE, creates the file CA\TEMPO001 used by the main subprogram.

Declare Sub createfile()
Sub main
Dim acctno as String*3
Dim recno as Long
Dim msgtext as String
Call createfile
recno=1
newline=Chr(10)
Open "CA\TEMPOO01" For Random As #1 Len=3
msgtext="The account numbers are:" & newline & newline
Do Until recno=11
Get #1,recno,acctno
msgtext=msgtext & acctno
recno=recno+1
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer

Open "C:\TEMPO001" for Output as #1

289

For x=1to 10
Write #1, x

Next X

Close #1

End Sub

' ComboBox Statement Example

‘This example defines a dialog box with a combination list and text box and three buttons.
Sub main
Dim ComboBox1() as String
ReDim ComboBox1(0)
ComboBox1(0)=Dir("C:*.*")
Begin Dialog UserDialog 166, 142, "VCBasic Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
OKButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

" Command Function Example

"This example opens the file entered by the user on the command line.
Sub main
Dim filename as String

Dim cmdline as String

290

Dim cmdlength as Integer
Dim position as Integer
cmdline=Command
If cmdline="" then

MsgBox "No command line information."

Exit Sub
End If
cmdlength=Len(cmdline)
position=InStr(cmdline,Chr(32))
filename=Mid(cmdline,position+1,cmdlength-position)
On Error Resume Next
Open filename for Input as #1
If Err<>0 then

MsgBox "Error loading file."

Exit Sub
End If
MsgBox "File " & filename & " opened."
Close #1

MsgBox "File " & filename & " closed.”

End Sub

' Const Statement Example

"This example divides the US national debt by the number of people in the country to find the
amount of money each person would have to pay to wipe it out. This figure is converted to a Long
integer and formatted as Currency.

Sub main
Dim debt As Single
Dim msgtext
Const Populace=250000000
debt=InputBox("Enter the current US national debt:")
msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")

MsgBox msgtext

201

End Sub

' Cos Function Example

"This example finds the length of a roof, given its pitch and the distance of the house from its center
to the outside wall.

Sub main
Dim bwidth, roof,pitch
Dim msgtext
Const PI=3.14159
Const conversion=P1/180
pitch=InputBox("Enter roof pitch in degrees")
pitch=Cos(pitch*conversion)
bwidth=InputBox("Enter 1/2 of house width in feet")
roof=bwidth/pitch
msgtext="The length of the roof is " & Format(roof, "##.##") & " feet."
MsgBox msgtext

End Sub

' CreateObject Function Example

"This example uses the CreateObject function to open the software product VISIO (if it is not already
open).

Sub main
Dim visio as Object
Dim doc as Object

Dim i as Integer, doccount as Integer

"Initialize Visio
on error resume next
Set visio = GetObject(,"visio.application™) ' find Visio
If (visio Is Nothing) then
Set visio = CreateObject("visio.application™) ' find Visio
If (visio Is Nothing) then

Msgbox "Couldn't find Visio!"

292

Exit Sub
End If
End If
MsgBox "Visio is open.”

End Sub

' CSng Function Example

"This example calculates the factorial of a number. A factorial (notated with an exclamation mark, 1)
is the product of a number and each integer between it and the number 1. For example, 5 factorial, or
51, is the product of 5*4*3*2*1, or the value 120.
Sub main
Dim number as Integer
Dim factorial as Double
Dim msgtext
number=InputBox("Enter an integer between 1 and 170:")
If number<=0 then
Exit Sub
End If
factorial=1
For x=number to 2 step -1
factorial=factorial*x
Next X
Rem If number =<35, then its factorial is small enough to be stored
Rem as a single-precision number
If number<35 then
factorial=CSng(factorial)
End If
msgtext="The factorial of " & number & " is: " & factorial
MsgBox msgtext

End Sub

293

' CStr Function Example

"This example converts a variable from a value to a string and displays the result. Variant type 5 is
Double and type 8 is String.

Sub main
Dim varl
Dim msgtext as String
varl=InputBox("Enter a number:")
varl=varl+10
msgtext=""Your number + 10 is: " & varl & Chr(10)
msgtext=msgtext & "which makes its Variant type: " & Vartype(varl)
MsgBox msgtext
varl=CStr(varl)
msgtext="After conversion to a string," & Chr(10)
msgtext=msgtext & "the Variant type is: " & Vartype(varl)
MsgBox msgtext

End Sub

'CStrings Metacommand Example

"This example displays two lines, the first time using the C-language characters "\n" for a carriage
return and line feed.

Sub main
'$CStrings
MsgBox "This is line 1\n This is line 2 (using C Strings)"
'$NoCStrings
MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"

End Sub

'‘CurDir Statement Example
"This example changes the current directory to C:\WINDOWS, if it is not already the default.

Sub main
Dim newdir as String
newdir="c:\windows"

If CurDir <> newdir then

294

ChDir newdir
End If
MsgBox "The default directory is now: " & newdir

End Sub

' CVar Function Example

‘This example converts a string variable to a variant variable.
Sub main
Dim answer as Single
answer=100.5
MsgBox "Answer' is DIM'ed as Single with the value: " & answer
answer=CVar(answer)
answer=Fix(answer)
MsgBox "Answer' is now a variant with a type of: " & VarType(answer)

End Sub

' CVDate Function Example

‘This example displays the date for one week from the date entered by the user.
Sub main
Dim strl as String
Dim nextweek
Dim msgtext
i: strl=InputBox$("Enter a date:")
answer=IsDate(str1)
If answer=-1 then
strl1=CVDate(strl)
nextweek=DateValue(strl)+7
msgtext="0ne week from the date entered is:
msgtext=msgtext & "Format(nextweek,"dddddd")
MsgBox msgtext
Else

MsgBox "Invalid date or format. Try again."

295

Goto i
End If

End Sub

' Date Function Example

"This example displays the date for one week from the today's date (the current date on the
computer).

Sub main
Dim nextweek
nextweek=CVar(Date)+7
MsgBox "One week from today is: " & Format(nextweek,"ddddd")

End Sub

' Date Statement Example

"This example changes the system date to a date entered by the user.
Sub main

Dim userdate

Dim answer

: userdate=InputBox("Enter a date for the system clock:")

If userdate=""" then
Exit Sub
End If
answer=IsDate(userdate)
If answer=-1 then
Date=userdate
Else
MsgBox "Invalid date or format. Try again."
Goto i
End If

End Sub

' DateSerial Function Example
"This example finds the day of the week New Year's day will be for the year 2000.

296

Sub main
Dim newyearsday
Dim daynumber
Dim msgtext
Dim newday as Variant
Const newyear=2000
Const newmonth=1
Let newday=1
newyearsday=DateSerial(newyear,newmonth,newday)
daynumber=Weekday(newyearsday)
msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
MsgBox msgtext

End Sub

' DateValue Function Example

"This example displays the date for one week from the date entered by the user
Sub main
Dim strl as String
Dim nextweek
Dim msgtext
i: strl=InputBox$("Enter a date:")
answer=IsDate(str1)
If answer=-1 then
str1=CVDate(strl)
nextweek=DateValue(str1)+7
msgtext="0ne week from your date is: " & Format(nextweek,"dddddd")
MsgBox msgtext
Else
MsgBox "Invalid date or format. Try again."
Goto i

End If

297

End Sub

' Day Function Example
"This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today, msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5
X=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x) & "/" & Day(Today+x)
MsgBox msgtext

End Sub

' DDEAppReturnCode Function Example
(None)

' DDEExecute Statement Example

"This example opens Microsoft Write, uses DDEPoke to write the text "Hello, world" to the open
document (Untitled) and uses DDEExecute to save the text to the file TEMPOO1.

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim testtext as String
Dim item as String
Dim pcommand as String
Dim msgtext as String
Dim x as Integer
Dim path as String
appname="WinWord"

path="c:\msoffice\winword\"

298

topic="Document1"
item="Pagel"
testtext="Hello, world."
On Error Goto Errhandler
x=Shell(path & appname & ".EXE")
channel = DDEInitiate(appname, topic)
If channel=0 then
MsgBox "Unable to open Write."
Exit Sub
End If
DDEPoke channel, item, testtext
pcommand="[FileSaveAs .Name =" & Chr$(34) & "C\TEMP001" & Chr$(34) & "]"
DDEExecute channel, pcommand
pcommand="[FileClose]"
DDEExecute channel, pcommand
msgtext="The text: " & testtext & " saved to C\TEMP001." & Chr$(13)
msgtext=msgtext & Chr$(13) & "Delete? (Y/N)"
answer=InputBox(msgtext)
If answer="Y" or answer="y" then
Kill "C:\TEMP001.doc"
End If
DDETerminate channel
Exit Sub
Errhandler:
If Err<>0 then
MsgBox "DDE Access failed."”
End If

End Sub

299

' DDElInitiate Function Example

"This example uses DDElInitiate to open a channel to Microsoft Word. It uses DDERequest to obtain
a list of available topics (using the System topic).

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim item as String
Dim msgtext as String
Dim path as string
appname="winword"
topic="System"
item="Topics"
path="c:\msoffice\winword\"
channel = -1
x=Shell(path & appname & ".EXE")
channel = DDEInitiate(appname, topic)
If channel=-1 then
msgtext="M/S Word not found -- please place on your path."
Else
On Error Resume Next
msgtext="The Word topics available are:" & Chr$(13)
msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
DDETerminate channel
If Err<>0 then
msgtext="DDE Access failed."
End If
End If
MsgBox msgtext

End Sub

300

' DDEPoke Statement Example

‘This example opens Microsoft Write, uses DDEPoke to write the text "Hello, world" to the open
document (Untitled) and uses DDEEXxecute to save the text to the file TEMPO0O1.

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim testtext as String
Dim item as String
Dim pcommand as String
Dim msgtext as String
Dim x as Integer
Dim path as String
appname="WinWord"
path="c:\msoffice\winword\"

topic="Document1"

item="Pagel"

testtext="Hello, world."

On Error Goto Errhandler

x=Shell(path & appname & ".EXE")

channel = DDEInitiate(appname, topic)

If channel=0 then
MsgBox "Unable to open Write."
Exit Sub

End If

DDEPoke channel, item, testtext

pcommand="[FileSaveAs .Name =" & Chr$(34) & "CA\TEMP001" & Chr$(34) & "]"

DDEExecute channel, pcommand

pcommand="[FileClose]"

DDEExecute channel, pcommand

msgtext="The text: " & testtext & " saved to C:\TEMP001." & Chr$(13)

301

msgtext=msgtext & Chr$(13) & "Delete? (Y/N)"

answer=InputBox(msgtext)

If answer="Y" or answer="y" then
Kill "CA\TEMPO0O01.doc"

End If

DDETerminate channel

Exit Sub

Errhandler:

If Err<>0 then
MsgBox "DDE Access failed."

End If

End Sub

' DDERequest Function Example

"This example uses DDElInitiate to open a channel to Microsoft Word. It uses DDERequest to obtain
a list of available topics (using the System topic).

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim item as String
Dim msgtext as String
Dim path as string
appname="winword"
topic="System"
item="Topics"
path="c:\msoffice\winword\"
channel = -1
x=Shell(path & appname & ".EXE")
channel = DDEInitiate(appname, topic)

If channel= -1 then

302

msgtext="M/S Word not found -- please place on your path."
Else
On Error Resume Next
msgtext="The Word topics available are:" & Chr$(13)
msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
DDETerminate channel
If Err<>0 then
msgtext="DDE Access failed."
End If
End If
MsgBox msgtext

End Sub

' DDETerminate Statement Example

"This example uses DDElInitiate to open a channel to Microsoft Word. It uses DDERequest to obtain
a list of available topics (using the System topic) and then terminates the channel using
DDETerminate.

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim item as String
Dim msgtext as String
Dim path as string
appname="winword"
topic="System"
item="Topics"
path="c:\msoffice\winword\"
channel = -1
x=Shell(path & appname & ".EXE")
channel = DDEInitiate(appname, topic)

If channel= -1 then

303

msgtext="M/S Word not found -- please place on your path."
Else
On Error Resume Next
msgtext="The Word topics available are:" & Chr$(13)
msgtext=msgtext & Chr$(13) & DDERequest(channel,item)
DDETerminate channel
If Err<>0 then
msgtext="DDE Access failed."
End If
End If
MsgBox msgtext

End Sub

' Declare Statement Example

"This example declares a function that is later called by the main subprogram. The function does
nothing but set its return value to 1.

Declare Function VCBasic_exfunction()
Sub main

Dimy as Integer

Call VCBasic_exfunction

y=VCBasic_exfunction

MsgBox "The value returned by the function is: " & y
End Sub

Function VCBasic_exfunction()
VCBasic_exfunction=1

End Function
' Deftype Statement Example

"This example finds the average of bowling scores entered by the user. Since the variable average
begins with A, it is automatically defined as a single-precision floating point number. The other
variables will be defined as Integers.

Defint c,s,t

DefSng a

304

Sub main
Dim count
Dim total
Dim score
Dim average
Dim msgtext
For count=0to 4
score=InputBox("Enter bowling score #" & count+1 &™:")
total=total+score
Next count
average=total/count
msgtext=""Your average is: " &average
MsgBox msgtext
End Sub

' Dialog Function Example

"This example creates a dialog box with a drop down combo box in it and three buttons: OK, Cancel,
and Help. The Dialog function used here enables the subroutine to trap when the user clicks on any
of these buttons.
Sub main
Dim cchoices as String
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "VCBasic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Pushl
End Dialog
Dim mydialogbox As UserDialog

answer= Dialog(mydialogbox)

305

Select Case answer
Case -1
MsgBox "You pressed OK"
Case 0
MsgBox "You pressed Cancel"
Case 1
MsgBox "You pressed Help"
End Select

End Sub

' Dialog Statement Example

"This example defines and displays a dialog box defined as UserDialog and named mydialogbox. If
the user presses the Cancel button, an error code of 102 is returned and is trapped by the If...Then
statement listed after the Dialog statement.

Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "VCBasic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then
MsgBox "You pressed Cancel.”
Else
MsgBox "You pressed OK."
End If

306

End Sub

' Dim Statement Example

"This example shows a Dim statement for each of the possible data types.
Rem Must define a record type before you can declare a record variable
Type Testrecord
Custno As Integer
Custname As String

End Type

Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()
...(code here)...

End Sub

' Dir Function Example

"This example lists the contents of the diskette in drive A.
Sub main

Dim msgret

Dim directory, count

Dim x, msgtext

Dim A()

msgret=MsgBox("Insert a disk in drive A.")

count=1

ReDim A(100)

directory=Dir ("A:*.*")

Do While directory<>""

307

A(count)=directory
count=count+1
directory=Dir
Loop
msgtext="Contents of drive A:\is:" & Chr(10) & Chr(10)
For x=1 to count
msgtext=msgtext & A(x) & Chr(10)
Next x
MsgBox msgtext

End Sub

' DIgControlID Function Example

"This example displays a dialog box similar to File Open.
Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Dim filetypes as String

Dim exestr$()

Dim button as Integer

Dim x as Integer

Dim directory as String

filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"

Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1

ListBox 9, 36, 75, 61, exestr$(), .ListBox1

308

Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropL.istBox 98, 120, 68, 12, ", .DropL.istBox2
OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)
DlgText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
x=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If

DlgL.istBoxArray 2,exestr$()

309

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
str1$="*exe" 'dialog box initialized
ListFiles str1$
Case 2 'button or control value changed
If DlgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Str1$="**"
Else
stri$="*.exe"
End If
ListFiles stri$
End If
Case 3 'text or combo box changed
str1$=DIgText$(1)

ListFiles str1$

Case 4 ‘control focus changed
Case 5 idle
End Select

End Function

' DIgEnable Statement Example

"This example displays a dialog box with two check boxes, one labeled Either, the other labeled Or.
If the user clicks on Either, the Or option is grayed. Likewise, if Or is selected, Either is grayed.
"This example uses the DIgEnable statement to toggle the state of the buttons.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main

Dim button as integer

310

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Begin Dialog newdlg 186, 92,"DIgEnable example”, .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 34, 25, 75, 19, "Either", .CheckBox1
CheckBox 34, 43, 73, 25, "Or", .CheckBox2

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 2 'button or control value changed
If DlgControlld(identifier$) = 2 Then
DlgEnable 3
Else
DlgEnable 2
End If
End Select

End Function

' DIgEnable Function Example
‘This example displays a dialog box with one check box, labeled Show More, and a group box,
labeled More, with two option buttons, Option 1 and Option 2. It uses the DIgEnable function to
enable the More group box and its options if the Show More check box is selected.
Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main

Dim button as integer

Dim identifier$

311

Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgEnable example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 13, 6, 75, 19, "Show more", .CheckBox1
GroupBox 16, 28, 94, 50, "More"
OptionGroup .OptionGroupl
OptionButton 23, 40, 56, 12, "Option 1", .OptionButton1
OptionButton 24, 58, 61, 13, "Option 2", .OptionButton?2
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgEnable 3,0
DlgEnable 4,0
DlgEnable 5,0
Case 2 'button or control value changed
If DIgControlID(identifier$) = 2 Then
If DIgEnable (3)=0 then
DlgEnable 3,1
DlgEnable 4,1
DlgEnable 5,1
Else
DlgEnable 3,0

DlgEnable 4,0

312

DlgEnable 5,0
End If
End If
End Select

End Function

' DIgEnd Statement Example

"This example displays a dialog box with the message "You have 30 seconds to cancel.” The dialog
box counts down from 30 seconds to 0. If the user clicks OK or Cancel during the countdown, the
dialog box closes. If the countdown reaches 0, however, the DIgEnd statement closes the dialog box.

Function timeout(id$,action%,suppvalue&)

Static timeoutStart as Long

Static currentSecs as Long

Dim thisSecs as Long

Select Case action%

Case 1
"initialize the dialog box. Set the ticker value to 30
"and remember when we put up the dialog box
DIgText "ticker", "30"
timeoutStart = timer
currentSecs = 30
Case 5

"this is an idle message - set thisSecs to the number of
' seconds left until timeout
thisSecs = timer
If thisSecs < timeoutStart Then thisSecs = thisSecs + 24*60*60
thisSecs = 30 - (thisSecs - timeoutStart)
"if there are negative seconds left, timeout!
If thisSecs < 0 Then DIgEnd -1
" If the seconds left has changed since last time,
" update the dialog box

If thisSecs <> currentSecs Then

313

DlgText "ticker", trim$(str$(thisSecs))
currentSecs = thisSecs
End If
" make sure to return non-zero so we keep getting idle messages
timeout = 1
End Select

End Function

Sub main
Begin Dialog newdlg 167, 78, "Do You Want to Continue?", .timeout
'$CStrings Save
OKButton 27, 49, 50, 14
CancelButton 91, 49, 50, 14
Text 24, 14, 119, 8, "This is your last chance to bail out.”
Text 27, 30, 35, 8, "You have"
Text 62, 30, 13, 8, 30", .ticker
Text 74, 30, 66, 8, "seconds to cancel."
'$CStrings Restore
End Dialog
Dim digVar As newdlg
If dialog(dlgvar) =0 Then
Exit Sub "abort
End If
" do whatever it is we want to do

End Sub

' DIgFocus Function Example

"This example displays a dialog box with a check box, labeled Checkl, and a text box, labeled Text
Box 1, in it. When the box is initialized, the focus is set to the text box. As soon as the user clicks the
check box, the focus goes to the OK button.

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main

314

Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIlgFocus Example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
TextBox 15, 37, 82, 12, .TextBox1
Text 15, 23, 57, 10, "Text Box 1"
CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action

Case 1
DlgFocus 2

Case 2 ‘user changed control or clicked a button
If DIgFocus() <> "OKButton" then

DlgFocus 0

End If

End Select

End Function

' DIgFocus Statement Example

"This example displays a dialog box with a check box, labeled Checkl, and a text box, labeled Text
Box 1, in it. When the box is initialized, the focus is set to the text box. As soon as the user clicks the
check box, the focus goes to the OK button.

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub Main

315

Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIlgFocus Example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
TextBox 15, 37, 82, 12, .TextBox1
Text 15, 23, 57, 10, "Text Box 1"
CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgFocus 2
Case 2 ‘user changed control or clicked a button
If DIgFocus() <> "OKButton" then
DlgFocus 0
End If
End Select

End Function

' DIgListBoxArray Function Example

"This example displays a dialog box with a check box, labeled "Display List", and an empty list box.
If the user clicks the check box, the list box is filled with the contents of the array called "myarray".
The DIgListBox Array function makes sure the list box is empty.
Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub Main

316

Dim button as integer
Dim identifier$
Dim action as Integer

Dim suppvalue as Integer

Begin Dialog newdlg 186, 92, "DlgListBoxArray Example", .FileDIgFunction

'$CStrings Save
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
ListBox 19, 26, 74,59, "™, .ListBox1
CheckBox 12, 4, 86, 13, "Display List", .CheckBox1
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Dim myarray$(3)
Dim msgtext as Variant
Dim x as Integer
Forx=0to 2
myarray$(x)=Chr$(x+65)
Next x
Select Case action

Case 1

Case 2 ‘user changed control or clicked a button

If DIgControlID(identifier$)=3 then
If DIgListBoxArray(2)=0 then
DlgListBoxArray 2, myarray$()

End If

317

End If
End Select

End Function

' DIgListBoxArray Statement Example

"This example displays a dialog box similar to File Open.
Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()
Dim button as Integer
Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"

DropListBox 98, 120, 68, 12, ", .DropListBox2

318

OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)
DigText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If
DlgL.istBoxArray 2,exestr$()

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
stri$=""*.exe" ‘dialog box initialized

ListFiles str1$

319

Case 2 'button or control value changed
If DIgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Str1$="**"
Else
stri$="*.exe"
End If
ListFiles str1$
End If
Case 3 'text or combo box changed
str1$=DIgText$(1)

ListFiles str1$

Case 4 ‘control focus changed
Case 5 "idle
End Select

End Function

' DIgSetPicture Statement Example

"This example displays a picture in a dialog box and changes the picture if the user clicks the check
box labeled "Change Picture".

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgSetPicture Example"”, .FileDIlgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
Picture 43, 28, 49, 31, "C:\WINDOWS\CIRCLES.BMP", 0

320

CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 ‘user changed control or clicked a button
If DIgControlID(identifier$)=3 then
If suppvalue=1 then
DlgSetPicture 2, "C:\WINDOWS\TILES.BMP",0
Else
DlgSetPicture 2, "C:\WINDOWS\CIRCLES.BMP",0
End If
End If
End Select

End Function

' DIgText Function Example

"This example displays a dialog box similar to File Open. It uses DIgText to determine what group of
files to display.

Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer

Dim filetypes as String

321

Dim exestr$()
Dim button as Integer
Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Sub ListFiles(str1$)
DlgText 1,str1$
x=0

Redim exestr$(x)

322

directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then

Do

exestr$(x)=LCase$(directory)

X=x+1

Redim Preserve exestr$(x)

directory=Dir

Loop Until directory=""
End If
DlgListBoxArray 2,exestr$()

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
str1$="*exe" 'dialog box initialized
ListFiles str1$
Case 2 'button or control value changed
If DlgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Str1$="**"
Else
stri$="*.exe"
End If
ListFiles str1$
End If
Case 3 'text or combo box changed
str1$=DIgText$(1)
ListFiles str1$

Case 4 ‘control focus changed

323

Case 5 "idle
End Select

End Function

' DIgText Statement Example

‘This example displays a dialog box similar to File Open. It uses the DIgText statement to display
the list of files in the Filename list box.

Declare Sub ListFiles(str1$)

Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()
Dim button as Integer
Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"

ListBox 99, 34, 66, 66, ", .ListBox2

324

Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OKButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)

DlgText 1,str1$

x=0

Redim exestr$(x)

directory=Dir$("c:\windows\" & str1$,16)

If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""

End If

DlgListBoxArray 2,exestr$()

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)

Select Case action

Case 1

325

stri$=""*.exe" 'dialog box initialized
ListFiles str1$
Case 2 'button or control value changed
If DlgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Strlg="**"
Else
str1$="*.exe"
End If
ListFiles stri$

End If

Case 3 'text or combo box changed
str1$=DlgText$(1)

ListFiles str1$

Case 4 ‘control focus changed
Case 5 idle
End Select

End Function

' DIgValue Function Example
"This example changes the picture in the dialog box if the check box is selected and changes the
picture to its original bitmap if the checkbox is turned off.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main

Dim button as integer

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Begin Dialog newdlg 186, 92, "DlgSetPicture Example"”, .FileDIgFunction

OKButton 130, 6, 50, 14

326

CancelButton 130, 23, 50, 14
Picture 43, 28, 49, 31, "C:\WINDOWS\CIRCLES.BMP", 0
CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)

End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 ‘user changed control or clicked a button
If DIgControlID(identifier$)=3 then
If DlgValue(3)=1 then
DlgSetPicture 2, "C:\WINDOWS\TILES.BMP",0
Else
DlgSetPicture 2, "C:\WINDOWS\CIRCLES.BMP",0
End If
End If
End Select

End Function

' DIgValue Statement Example
"This example displays a dialog box with a checkbox, labeled Change Option, and a group box with
two option buttons, labeled Option 1 and Option 2. When the user clicks the Change Option button,
Option 2 is selected.
Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

327

Begin Dialog newdlg 186, 92, "DIlgValue Example"”, .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Change Option", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButtonl
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton?2
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 'user changed control or clicked a button
If DIgControlID(identifier$)=2 then
If DlgValue(2)=1 then
DlgValue 4,1
Else
DlgValue 4,0
End If
End If
End Select

End Function

' DIgVisible Function Example

"This example displays Option 2 in the Group box if the user clicks the check box labeled "Show
Option 2". If the user clicks the box again, Option 2 is hidden.

Declare Function FileDIgFunction(identifier$, action, suppvalue)

328

Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer

Dim suppvalue as Integer

Begin Dialog newdlg 186, 92, "DIgVisible Example", .FileDIgFunction

OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButtonl
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgVisible 6,0
Case 2 ‘user changed control or clicked a button
If DIgControlID(identifier$)=2 then
If DIgVisible(6)<>1 then
DlgVisible 6
End If
End If
End Select

End Function

329

' DIgVisible Statement Example

‘This example displays Option 2 in the Group box if the user clicks the check box. labeled "Show
Option 2". If the user clicks the box again, Option 2 is hidden.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgVisible Example", .FileDIgFunction
OKButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButtonl
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton?2
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgVisible 6,0
Case 2 ‘user changed control or clicked a button
If DIgControlID(identifier$)=2 then
If DIgVisible(6)<>1 then
DlgVisible 6

End If

330

End If
End Select

End Function

' Do...Loop Statement Example

"This example lists the contents of the diskette in drive A.
Sub main
Dim msgret
Dim directory, count
Dim x, msgtext
Dim A()
msgret=MsgBox("Insert a disk in drive A.")
count=1
ReDim A(100)
directory=Dir ("A*.*")
Do While directory<>""
A(count)=directory
count=count+1
directory=Dir
Loop
msgtext="Directory of drive A:\ is:" & Chr(10)
For x=1 to count
msgtext=msgtext & A(x) & Chr(10)
Next X
MsgBox msgtext

End Sub

' DoEvents Statement Example

"This example activates the Windows 95 Phone Dialer application, dials the number and then allows
the operating system to process events.

Sub main

Dim phonenumber, msgtext

331

Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Dialer.exe",1)
Fori=1to5
DoEvents
Next i
AppActivate "Phone Dialer"
SendKeys phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext
DoEvents

End Sub

' DropComboBox Statement Example

"This example defines a dialog box with a drop combo box and the OK and Cancel buttons.
Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "VCBasic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then

MsgBox "You pressed Cancel.

Else

332

MsgBox "You pressed OK."
End If

End Sub

' DropListBox Statement Example

"This example defines a dialog box with a drop list box and the OK and Cancel buttons.
Sub main
Dim DropListBox1() as String
ReDim DropListBox1(3)
For x=0to 2
DropListBox1(x)=Chr(65+x) & ":"
Next x
Begin Dialog UserDialog 186, 62, "VCBasic Dialog Box"
Text 8,4, 42, 8, "Drive:", .Text3
DropListBox 8, 16, 95, 44, DropL.istBox1(), .DropListBox1
OKButton 124, 6, 54, 14
CancelButton 124, 26, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

" Environ Statement Example

"This example lists all the strings from the operating system environment table.
Sub main

Dim str1(100)

Dim msgtext

Dim count, x

333

Dim newline
newline=Chr(10)
x=1
str1(x)= Environ(x)
Do While Environ(x)<>""
str1(x)= Environ(x)
X=x+1
str1(x)=Environ(x)
Loop
msgtext="The Environment Strings are:" & newline & newline
count=x
For x=1 to count
msgtext=msgtext & str1(x) & newline
Next X
MsgBox msgtext

End Sub

" Eof Function Example

"This example uses the Eof function to read records from a Random file, using a Get statement. The
Eof function keeps the Get statement from attempting to read beyond the end of the file. The
subprogram, CREATEFILE, creates the file CATEMPOO1 used by the main subprogram.

Declare Sub createfile()
Sub main
Dim acctno
Dim msgtext as String
newline=Chr(10)
Call createfile
Open "C:\temp001" For Input As #1
msgtext="The account numbers are:" & newline
Do While Not Eof(1)
Input #1,acctno

msgtext=msgtext & newline & acctno & newline

334

Loop

MsgBox msgtext
Close #1

Kill "CATEMPOO1"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "CATEMPO0O01" for Output as #1
For x=1to 10
Write #1, x
Next x
Close #1

End Sub

' Erase Statement Example

"This example prompts for a list of item numbers to put into an array and clears array if the user
wants to start over.

Sub main
Dim msgtext
Dim inum(100) as Integer
Dim x, count
Dim newline
newline=Chr(10)
x=1
count=x
inum(x)=0
Do
inum(x)=InputBox("Enter item #" & x & " (99=start over;0=end):")

If inum(x)=99 then

335

Erase inum()
x=0
Elself inum(x)=0 then
Exit Do
End If
X=x+1
Loop
count=x-1
msgtext=""You entered the following numbers:" & newline
For x=1 to count
msgtext=msgtext & inum(x) & newline
Next x
MsgBox msgtext

End Sub

" Erl Function Example

"This example prints the error number using the Err function and the line number using the Erl
statement if an error occurs during an attempt to open a file. Line numbers are automatically
assigned, starting with 1, which is the Sub main statement.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
' L..etc....
Close #1
done:
Exit Sub
Debugger:

msgtext="Error number " & Err & " occurred at line: " & Erl

336

MsgBox msgtext
Resume done

End Sub

" Err Function Example

"This example prints the error number using the Err function and the line number using the Erl
statement if an error occurs during an attempt to open a file. Line numbers are automatically
assigned, starting with 1, which is the Sub main statement.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”

' ..etc....
Close #1

done:
Exit Sub

Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext
Resume done

End Sub

' Err Statement Example
"This example generates an error code of 10000 and displays an error message if a user does not
enter a customer name when prompted for it. It uses the Err statement to clear any previous error
codes before running the loop the first time and it also clears the error to allow the user to try again.
Sub main
Dim custname as String
On Error Resume Next

Do

Err=0

337

custname=InputBox$("Enter customer name:")
If custname="""then
Error 10000
Else
Exit Do
End If
Select Case Err
Case 10000
MsgBox "You must enter a customer name."
Case Else
MsgBox "Undetermined error. Try again."
End Select
Loop Until custname<>""

MsgBox "The name is: " & custname

End Sub

" Error Function Example

"This example prints the error number, using the Err function, and the text of the error, using the
Error$ function, if an error occurs during an attempt to open a file.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
' ...etc....
Close #1
done:

Exit Sub

Debugger:

338

msgtext="Error " & Err & ": "' & Error$
MsgBox msgtext
Resume done

End Sub

" Error Statement Example

"This example generates an error code of 10000 and displays an error message if a user does not
enter a customer name when prompted for it.

Sub main
Dim custname as String
On Error Resume Next
Do
Err=0
custname=InputBox$("Enter customer name:")
If custname="" then
Error 10000
Else
Exit Do
End If
Select Case Err
Case 10000
MsgBox "You must enter a customer name."
Case Else
MsgBox "Undetermined error. Try again."
End Select
Loop Until custname<>""
MsgBox "The name is: " & custname

End Sub

' Exit Statement Example

‘This example uses the On Error statement to trap run-time errors. If there is an error, the program
execution continues at the label "Debugger”. The example uses the Exit statement to skip over the
debugging code when there is no error.

339

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
'...etc....
Close #1
done:
Exit Sub
Debugger:
msgtext="Error " & Err & ": "' & Error$
MsgBox msgtext

Resume done

End Sub

" Exp Function Example
"This example estimates the value of a factorial of a number entered by the user. A factorial (notated
with an exclamation mark, !) is the product of a number and each integer between it and the number
1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the value 120.
Sub main
Dim x as Single
Dim msgtext, Pl

Dim factorial as Double

P1=3.14159

: x=InputBox("Enter an integer between 1 and 88: ")
If x<=0 then
Exit Sub
Elself x>88 then
MsgBox "The number you entered is too large. Try again."

Goto i

340

End If

factorial=Sqr(2*P1*x)*(x"x/Exp(x))

msgtext=""The estimated factorial is: " & Format(factorial, "Scientific")
MsgBox msgtext

End Sub

' FileAttr Function Example

"This example closes an open file if it is open for Input or Output. If open for Append, it writes a
range of numbers to the file. The second subprogram, CREATEFILE, creates the file and leaves it
open.

Declare Sub createfile()
Sub main
Dim filemode as Integer
Dim attrib as Integer
Call createfile
attrib=1
filemode=FileAttr(1,attrib)
If filemode=1 or 2 then
MsgBox "File was left open. Closing now."
Close #1
Else
For x=11to 15
Write #1, x
Next X
Close #1
End If
Kill "CA\TEMPO001"
End Sub
Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer

Open "C:\TEMPO001" for Output as #1

341

For x=11to0 10
Write #1, X
Next x

End Sub

' FileCopy Statement Example

‘This example copies one file to another. Both filenames are specified by the user.
Sub main
Dim oldfile, newfile
On Error Resume Next
oldfile= InputBox("Copy which file?")
newfile= InputBox("Copy to?")
FileCopy oldfile,newfile
If Err<>0 then
msgtext="Error during copy. Rerun program."
Else
msgtext="Copy successful."
End If
MsgBox msgtext

End Sub

' FileDateTime Function Example

‘This example writes data to a file if it hasn't been saved within the last 2 minutes.
Sub main

Dim tempfile

Dim filetime, curtime

Dim msgtext

Dim acctno(100) as Single

Dimx, |

tempfile="C\TEMPO001"

Open tempfile For Output As #1

filetime=FileDate Time(tempfile)

342

x=1

=1
acctno(x)=0
Do

curtime=Time

acctno(x)=InputBox("Enter an account number (99 to end):")

If acctno(x)=99 then
For 1=1 to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I1=1to x
Write #1, acctno(l)
Next |
End If
X=X+1
Loop
Close #1
x=1
msgtext="Contents of CATEMPO001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1

Kill "C\TEMP001"

343

End Sub

' FileLen Function Example

"This example returns the length of a file.
Sub main
Dim length as Long
Dim userfile as String
Dim msgtext
On Error Resume Next
msgtext="Enter a filename:"
userfile=InputBox(msgtext)
length=FileLen(userfile)
If Err<>0 then
msgtext="Error occurred. Rerun program."
Else
msgtext=""The length of " & userfile & " is: " & length
End If
MsgBox msgtext

End Sub

' Fix Function Example

"This example returns the integer portion of a number provided by the user.
Sub main
Dim usernum
Dim intvalue
usernum=InputBox("Enter a number with decimal places:")
intvalue=Fix(usernum)
MsgBox "The integer portion of " & usernum & " is: " & intvalue

End Sub

344

' For...Next Statement Example

‘This example calculates the factorial of a number. A factorial (notated with an exclamation mark, !)
is the product of a number and each integer between it and the number 1. For example, 5 factorial, or
51, is the product of 5*4*3*2*1, or the value 120.

Sub main
Dim number as Integer
Dim factorial as Double
Dim msgtext
number=InputBox("Enter an integer between 1 and 170:")
If number<=0 then
Exit Sub
End If
factorial=1
For x=number to 2 step -1
factorial=factorial*x
Next X
Rem If number<= 35, then its factorial is small enough
Rem to be stored as a single-precision number
If number<35 then
factorial=CSng(factorial)
End If
msgtext="The factorial of " & number & " is: " & factorial
MsgBox msgtext
End Sub

' Format Function Example

"This example calculates the square root of 2 as a double-precision floating point value and displays
it in scientific notation.

Sub main
Dim value
Dim msgtext

value=CDbl(Sqr(2))

345

msgtext="The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext

End Sub

' FreeFile Function Example

"This example opens a file and assigns to it the next file number available.
Sub main
Dim filenumber
Dim filename as String
filenumber=FreeFile
filename=InputBox("Enter a file to open: ")
On Error Resume Next
Open filename For Input As filenumber
If Err<>0 then
MsgBox "Error loading file. Re-run program.”
Exit Sub
End If
MsgBox "File " & filename & " opened as number: " & filenumber
Close #filenumber
MsgBox "File now closed."

End Sub

" Function...End Function Example

"This example declares a function that is later called by the main subprogram. The function does
nothing but set its return value to 1.

Declare Function VCBasic_exfunction()
Sub main
Dimy as Integer
Call VCBasic_exfunction
y=VCBasic_exfunction
MsgBox "The value returned by the function is: " & y

End Sub

346

Function VCBasic_exfunction()
VCBasic_exfunction=1

End Function

' FV Function Example

"This example finds the future value of an annuity, based on terms specified by the user.
Sub main
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext
annuitypv=InputBox("Enter present value of the annuity: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
periods=InputBox("Enter the total number of pay periods:)
payment=InputBox("Enter the initial amount paid to you: ")
Rem Assume payments are made at end of month
due=0
futurevalue=FV (aprate/12,periods,-payment,-annuitypv,due)
msgtext= "The future value is: " & Format(futurevalue, "Currency")
MsgBox msgtext
End Sub

' Get Statement Example

"This example opens a file for Random access, gets its contents, and closes the file again. The second
subprogram, CREATEFILE, creates the C:\TEMPQO1 file used by the main subprogram.

Declare Sub createfile()
Sub main

Dim acctno as String*3

347

Dim recno as Long
Dim msgtext as String
Call createfile
recno=1
newline=Chr(10)
Open "C\TEMPO001" For Random As #1 Len=3
msgtext=""The account numbers are:" & newline
Do Until recno=11
Get #1,recno,acctno
msgtext=msgtext & acctno
recno=recno+1
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "CA\TEMPO0O01" for Output as #1
For x=1to 10
Write #1, X
Next X
Close #1

End Sub

' GetAttr Function Example

"This example tests the attributes for a file and if it is hidden, changes it to a non-hidden file.
Sub main

Dim filename as String

348

Dim attribs, saveattribs as Integer
Dim answer as Integer
Dim archno as Integer
Dim msgtext as String
archno=32
On Error Resume Next
msgtext="Enter name of a file:"
filename=InputBox(msgtext)
attribs=GetAttr(filename)
If Err<>0 then
MsgBox "Error in filename. Re-run Program."
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"
answer=Msghox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed."
Case Else

MsgBox "File was not hidden."

349

End Select

End Sub

' GetField Function Example

"This example finds the third value in a string, delimited by plus signs (+).
Sub main

Dim teststring,retvalue

Dim msgtext

teststring="9+8+7+6+5"

retvalue=GetField(teststring,3,"+"

MsgBox "The third field in: " & teststring & " is: " & retvalue

End Sub

' GetObject Function Example
"This example displays a list of open files in the software application, VISIO. It uses the GetObject
function to access VISIO. To see how this example works, you need to start VISIO and open one or
more documents.
Sub main
Dim visio as Object
Dim doc as Object

Dim msgtext as String

Dim i as Integer, doccount as Integer

‘Initialize Visio
Set visio = GetObject(,"visio.application™) ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLEZ2 call to Visio
If doccount=0 then

msgtext="No open Visio documents."

350

Else
msgtext="The open files are: " & Chr$(13)
For i = 1 to doccount
Set doc = visio.documents(i) 'access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext

End Sub

' Global Statement Example

"This example contains two subroutines that share the variables TOTAL and ACCTNO, and the

record GRECORD.
Type acctrecord
acctno As Integer

End Type

Global acctno as Integer
Global total as Integer
Global grecord as acctrecord

Declare Sub createfile

Sub main
Dim msgtext
Dim newline as String
newline=Chr$(10)
Call createfile
Open "CATEMPOO01" For Input as #1
msgtext="The new account numbers are: " & newline
For x=1 to total

Input #1, grecord.acctno

351

msgtext=msgtext & newline & grecord.acctno
Next X
MsgBox msgtext
Close #1
Kill "CA\TEMP001"
End Sub

Sub createfile
Dim x
x=1
grecord.acctno=1
Open "CATEMPO001" For Output as #1
Do While grecord.acctno<>0
grecord.acctno=InputBox("Enter O or new account #" & X & ":")
If grecord.acctno<>0 then
Print #1, grecord.acctno
X=x+1
End If
Loop
total=x-1
Close #1

End Sub

' GoTo Statement Example

"This example displays the date for one week from the date entered by the user. If the date is invalid,
the Goto statement sends program execution back to the beginning.

Sub main
Dim strl as String
Dim nextweek
Dim msgtext

i: strl=InputBox$("Enter a date:")

352

answer=IsDate(str1)

If answer=-1 then
str1=CVDate(strl)
nextweek=DateValue(strl)+7
msgtext="0ne week from the date entered is:"
msgtext=msgtext & Format(nextweek,"dddddd")
MsgBox msgtext

Else
MsgBox "Invalid date or format. Try again."
Goto i

End If

End Sub

' GroupBox Statement Example

"This example creates a dialog box with two group boxes.

Sub main

Begin Dialog UserDialog 242, 146, "Print Dialog Box"
'$CStrings Save
GroupBox 115, 14, 85, 57, "Page Range"
OptionGroup .OptionGroup?2
OptionButton 123, 30, 46, 12, "All Pages", .OptionButtonl
OptionButton 123, 50, 67, 8, "Current Page", .OptionButton2
GroupBox 14, 12, 85, 76, "Include"
CheckBox 26, 17, 54, 25, "Pictures", .CheckBox1
CheckBox 26, 36, 54, 25, "Links", .CheckBox2
CheckBox 26, 58, 63, 25, "Header/Footer", .CheckBox3
PushButton 34, 115, 54, 14, "Print"
PushButton 136, 115, 54, 14, "Cancel"
'$CStrings Restore
End Dialog

Dim mydialog as UserDialog

353

Dialog mydialog
End Sub

' Hex Function Example

‘This example returns the hex value for a number entered by the user.
Sub main
Dim usernum as Integer
Dim hexvalue
usernum=InputBox("Enter a number to convert to hexidecimal:")
hexvalue=Hex(usernum)
Msgbox "The HEX value is: " & hexvalue

End Sub

' Hour Function Example

"This example extracts just the time (hour, minute, and second) from a file's last modification date
and time.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec

Dim msgtext as String

: msgtext="Enter a filename:"
filename=InputBox(msgtext)
If filename=""then

Exit Sub
End If
On Error Resume Next
ftime=FileDateTime(filename)
If Err<>0 then

MsgBox "Error in file name. Try again.

Goto i:

354

End If

hr=Hour(ftime)

min=Minute(ftime)

sec=Second(ftime)

Msgbox "The file's time is: " & hr &":" &min &":" &sec

End Sub

"If...Then...Else Function Example

"This example checks the time and the day of the week, and returns an appropriate message.
Sub main
Dim h, m, m2, w
h = hour(now)
If h > 18 then
m= "Good evening, "

Elseif h >12 then

m= "Good afternoon, "
Else

m="Good morning, "
End If

w = weekday(now)
If w=1orw =7 then m2 = "the office is closed." else m2 = "please hold for company operator."
Msgbox m & m2
End Sub

Include Metacommand Example

"This example includes a file containing the list of global variables, called GLOBALS.SBH. For this
example to work correctly, you must create the GLOBALS.SBH file with at least the following
statement: Dim gtext as String. The Option Explicit statement is included in this example to prevent
VCBasic from automatically dimensioning the variable as a Variant.

Option Explicit
Sub main
Dim msgtext as String

'$Include: "c:\globals.sbh"

355

gtext=InputBox("Enter a string for the global variable:")
msgtext=""The variable for the string "'

msgtext=msgtext & gtext & " was DIM'ed in GLOBALS.SBH."
MsgBox msgtext

End Sub

" Input Function Example

"This example opens a file and prints its contents to the screen.
Sub main
Dim fname
Dim fchar()
Dim x as Integer
Dim msgtext
Dim newline
newline=Chr(10)
On Error Resume Next
fname=InputBox("Enter a filename to print:")
If fname=""then
Exit Sub
End If
Open fname for Input as #1
If Err<>0 then
MsgBox "Error loading file. Re-run program.”
Exit Sub
End If
msgtext=""The contents of " & fname & " is: " & newline &newline
Redim fchar(Lof(1))
For x=1 to Lof(1)
fchar(x)=Input(1,#1)
msgtext=msgtext & fchar(x)

Next x

356

MsgBox msgtext
Close #1

End Sub

" Input Statement Example

"This example prompts a user for an account number, opens a file, searches for the account number
and displays the matching letter for that number. It uses the Input statement to increase the value of
x and at the same time get the letter associated with each value. The second subprogram,
CREATEFILE, creates the file CATEMPO001 used by the main subprogram.

Declare Sub createfile()

Global x as Integer

Global y(100) as String

Sub main
Dim acctno as Integer
Dim msgtext
Call createfile
i: acctno=InputBox("Enter an account number from 1-10:")
If acctno<1 Or acctno>10 then
MsgBox "Invalid account number. Try again."
Goto i
End if
x=1
Open "CATEMPOO01" for Input as #1
Do Until x=acctno
Input #1, X,y(X)
Loop
msgtext=""The letter for account number " & x & " is: " & y(X)
Close #1
MsgBox msgtext
Kill "CA\TEMP001"

End Sub

357

Sub createfile()
" Put the numbers 1-10 and letters A-J into a file
Dim startletter
Open "CATEMPO0O01" for Output as #1
startletter=65
For x=1to 10
y(x)=Chr(startletter)
startletter=startletter+1
Next X
For x=1to 10
Write #1, X,y(X)
Next x
Close #1

End Sub

" InputBox Function Example

"This example uses InputBox to prompt for a filename and then prints the filename using MsgBox.
Sub main

Dim filename

Dim msgtext

msgtext="Enter a filename:"

filename=InputBox$(msgtext)

MsgBox "The file name you entered is: "' & filename

End Sub

" InStr Function Example

"This example generates a random string of characters then uses InStr to find the position of a single
character within that string.

Sub main
Dim x as Integer

Dimy

358

Dim strl as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim position as Integer
Dim msgtext, newline
upper=Asc("z"
lower=Asc("a")
newline=Chr(10)
For x=1 to 26
Randomize timer() + x*255
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter
'‘Need to waste time here for fast processors
For y=1 to 1000
Nexty
Next X
str2=InputBox("Enter a letter to find")
position=InStr(strl,str2)
If position then
msgtext=""The position of " & str2 & " is: " & position & newline
msgtext=msgtext & "in string: " & strl
Else
msgtext="The letter: " & str2 & " was not found in: " & newline
msgtext=msgtext & strl
End If
MsgBox msgtext

End Sub

359

" Int Function Example

"This example uses Int to generate random numbers in the range between the ASCII values for
lowercase a and z (97 and 122). The values are converted to letters and displayed as a string.

Sub main

Dim x as Integer

Dimy

Dim strl as String

Dim letter as String

Dim randomvalue

Dim upper, lower

Dim msgtext, newline

upper=Asc("z")

lower=Asc("a")

newline=Chr(10)

For x=1to 26
Randomize timer() + x*255
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
stri=strl & letter

'‘Need to waste time here for fast processors

For y=1 to 1500
Next y

Next x

msgtext="The string is:" & newline

msgtext=msgtext & strl

MsgBox msgtext

End Sub

" IPmt Function Example

"This example finds the interest portion of a loan payment amount for payments made in last month
of the first year. The loan is for $25,000 to be paid back over 5 years at 9.5% interest.

Sub main

360

Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, intpaid
Dim msgtext
aprate=.095
payperiod=12
periods=120
loanpv=25000
loanfv=0
Rem Assume payments are made at end of month
due=0
intpaid=IPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
msgtext="For a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
msgtext=msgtext+ "the interest paid in month 12 is: "
msgtext=msgtext + Format(intpaid, "Currency")
MsgBox msgtext

End Sub

" IRR Function Example

"This example calculates an internal rate of return (expressed as an interest rate percentage) for a
series of business transactions (income and costs). The first value entered must be a negative
amount, or IRR generates an "lllegal Function Call" error.

Sub main
Dim cashflows() as Double
Dim guess, count as Integer
Dim i as Integer
Dim intnl as Single
Dim msgtext as String
guess=.15
count=InputBox("How many cash flow amounts do you have?")

ReDim cashflows(count+1)

361

For i=0 to count-1

cashflows(i)=InputBox("Enter income value for month " & i+1 &

Next i

intnl=IRR(cashflows(),guess)

msgtext="The IRR for your cash flow amounts is: "
msgtext=msgtext & Format(intnl, "Percent")
MsgBox msgtext

End Sub

" Is Operator Example

"This example displays a list of open files in the software application, VISIO. It uses the Is operator
to determine whether VISIO is available. To see how this example works, you need to start VISIO

and open one or more documents.
Sub main

Dim visio as Object

Dim doc as Object

Dim msgtext as String

Dim i as Integer, doccount as Integer

‘Initialize Visio
Set visio = GetObject(,"visio.application™) ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If

'Get # of open Visio files

doccount = visio.documents.count 'OLE2 call to Visio

If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)

For i = 1 to doccount

362

Set doc = visio.documents(i) 'access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext

End Sub

" IsDate Function Example

"This example accepts a string from the user and checks to see if it is a valid date
Sub main
Dim theDate
theDate = InputBox("Enter a date:")
If IsDate(theDate)=-1 then
MsgBox "The new date is: " & Format(CVDate(theDate), "dddddd")
Else
MsgBox "The date is not valid."
End If

End Sub

" ISEmpty Function Example

"This example prompts for a series of test scores and uses ISEmpty to determine whether the
maximum allowable limit has been hit. (ISEmpty determines when to exit the Do...Loop.)

Sub main

Dim arrayvar(10)

Dim x as Integer

Dim tscore as Single

Dim total as Integer

x=1

Do
tscore=InputBox("Enter test score #" & x & ":")
arrayvar(x)=tscore

X=X+1

363

Loop Until IsEmpty(arrayvar(10))<>-1
total=x-1
msgtext=""You entered: " & Chr(10)
For x=1 to total

msgtext=msgtext & Chr(10) & arrayvar(x)
Next x
MsgBox msgtext

End Sub

" IsMissing Function Example

"This example prints a list of letters. The number printed is determined by the user. If the user wants
to print all letters, the Function myfunc is called without any argument. The function uses IsMissing
to determine whether to print all the letters or just the number specified by the user.

Sub myfunc(Optional argl)
If IsMissing(argl)=-1 then
argl=26
End If
msgtext="The letters are: " & Chr$(10)
For x=1to argl
msgtext=msgtext & Chr$(x+64) & Chr$(10)
Next X
MsgBox msgtext

End sub

Sub main
Dimargl
argl=InputBox("How many letters do you want to print? (0 for all)")
If arg1=0 then
myfunc
Else
myfunc argl

End If

364

End Sub

" IsNull Function Example

"This example asks for ten test score values and calculates the average. If any score is negative, the
value is set to Null. Then IsNull is used to reduce the total count of scores (originally 10) to just
those with positive values before calculating the average.

Sub main
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count=10
total=0
For x=1 to count
tscore=InputBox("Enter test score #" & x & ":")
If tscore<0 then
arrayvar(x)=Null
Else
arrayvar(x)=tscore
total=total+arrayvar(x)
End If
Next X
Do While x<>0
x=x-1
If IsNull(arrayvar(x))=-1 then
count=count-1
End If
Loop
msgtext=""The average (excluding negative values) is: " & Chr(10)
msgtext=msgtext & Format (total/count, "##.##")

MsgBox msgtext

365

End Sub

" IsNumeric Function Example

"This example uses IsNumeric to determine whether a user selected an option (1-3) or typed "Q" to

quit.
Sub main
Dim answer
answer=InputBox("Enter a choice (1-3) or type Q to quit™)
If IsNumeric(answer)=-1 then
Select Case answer
Case 1
MsgBox "You chose #1."
Case 2
MsgBox "You chose #2."
Case 3
MsgBox "You chose #3."
End Select
Else
MsgBox "You typed Q."
End If
End Sub

' Kill Function Example

"This example prompts a user for an account number, opens a file, searches for the account number
and displays the matching letter for that number. The second subprogram, CREATEFILE, creates
the file C:A\TEMPOQO1 used by the main subprogram. After processing is complete, the first
subroutine uses Kill to delete the file.

Declare Sub createfile()

Global x as Integer

Global y(100) as String

Sub main
Dim acctno as Integer

Dim msgtext

366

Call createfile

: acctno=InputBox("Enter an account number from 1-10:")

If acctno<l Or acctno>10 then
MsgBox "Invalid account number. Try again."
Goto i:

End if

x=1

Open "C\TEMPO001" for Input as #1

Do Until x=acctno
Input #1, X,y(X)

Loop

msgtext=""The letter for account number " & x & " is: " & y(X)

Close #1
MsgBox msgtext

Kill "C\TEMP001"

End Sub

Sub createfile()

' Put the numbers 1-10 and letters A-J into a file

Dim startletter
Open "CA\TEMPO0O01" for Output as #1
startletter=65
For x=1to 10
y(x)=Chr(startletter)
startletter=startletter+1
Next x
For x=1to 10
Write #1, X,y(X)
Next X

Close #1

367

End Sub

' LBound Function Example

"This example resizes an array if the user enters more data than can fit in the array. It uses LBound
and UBound to determine the existing size of the array and ReDim to resize it. Option Base sets the
default lower bound of the array to 1.

Option Base 1
Sub main
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total=0
x=1
count=InputBox("How many test scores do you have?")
ReDim arrayvar(count)
start:
Do until x=count+1
arrayvar(x)=InputBox("Enter test score #" &x & ":")
X=x+1
Loop
answer=InputBox$("Do you have more scores? (Y/N)")
If answer="Y" or answer="y" then
count=InputBox("How many more do you have?")
If count<>0 then
count=count+(x-1)
ReDim Preserve arrayvar(count)
Goto start
End If
End If

x=LBound(arrayvar,1)

368

count=UBound(arrayvar,1)
For y=x to count
total=total+arrayvar(y)
Nexty
MsgBox "The average of " & count & " scores is: " & Int(total/count)

End Sub

' LCase Function Example

"This example converts a string entered by the user to lowercase.
Sub main
Dim userstr as String
userstr=InputBox$("Enter a string in upper and lowercase letters")
userstr=LCase$(userstr)
Msgbox "The string now is: " & userstr

End Sub

' Left Function Example

"This example extracts a user's first name from the entire name entered.
Sub main
Dim username as String
Dim count as Integer
Dim firstname as String
Dim charspace
charspace=Chr(32)
username=InputBox("Enter your first and last name")
count=InStr(username,charspace)
firstname=Left(username,count)
Msgbox "Your first name is: " &firstname

End Sub

' Len Function Example

"This example returns the length of a name entered by the user (including spaces).

369

Sub main
Dim username as String
username=InputBox("Enter your name")
count=Len(username)
Msgbox "The length of your name is: " &count

End Sub

' Let (Assignment Statement) Example

"This example uses the Let statement for the variable sum. The subroutine finds an average of 10
golf scores.

Sub main

Dim score As Integer

Dim x, sum

Dim msgtext

Let sum=0

For x=110 10
score=InputBox("Enter your last ten golf scores #' & x & ":")
sum=sum-+score

Next x

msgtext="Your average is: " & Clnt(sum/(x-1))

MsgBox msgtext

End Sub

' Like Operator Example

"This example tests whether a letter is lowercase.
Sub main

Dim userstr as String

Dim revalue as Integer

Dim msgtext as String

Dim pattern

pattern="[a-z]"

userstr=InputBox$("Enter a letter:")

370

retvalue=userstr LIKE pattern
If retvalue=-1 then
msgtext=""The letter " & userstr & " is lowercase."
Else
msgtext="Not a lowercase letter."
End If
Msgbox msgtext

End Sub

' Line Input Statement Example

"This example reads the contents of a sequential file line by line (to a carriage return) and displays
the results. The second subprogram, CREATEFILE, creates the file CA\TEMPOQ01 used by the main

subprogram.
Declare Sub createfile()
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline
Call createfile
Open "c:\temp001" for Input as #1
x=1
newline=Chr(10)
msgtext= "The contents of c:\temp001 is: " & newline
Do Until x=Lof(1)
Line Input #1, testscore
X=X+1
y=Seek(1)
If y>Lof(1) then
x=Lof(1)
Else

Seek 1,y

371

End If
msgtext=msgtext & testscore & newline
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "CATEMPO0O01" for Output as #1
For x=1to 10
Write #1, X
Next x
Close #1

End Sub

' ListBox Statement Example

"This example defines a dialog box with list box and two buttons.
Sub main
Dim ListBox1() as String
ReDim ListBox1(0)
ListBox1(0)="C:\"
Begin Dialog UserDialog 133, 66, 171, 65, "VCBasic Dialog Box"
Text 3,3, 34,9, "Directory:", .Text2
ListBox 3, 14, 83, 39, ListBox1(), .ListBox2
OKButton 105, 6, 54, 14
CancelButton 105, 26, 54, 14
End Dialog

Dim mydialog as UserDialog

372

On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

' Loc Function Example

"This example creates a file of account numbers as entered by the user. When the user finishes, the
example displays the offset in the file of the last entry made.

Sub main
Dim filepos as Integer
Dim acctno() as Integer
Dim x as Integer
x=0
Open "c:\TEMP0O01" for Random as #1
Do
X=x+1
Redim Preserve acctno(x)
acctno(x)=InputBox("Enter account #" & x & " or 0 to end:")
If acctno(x)=0 then
Exit Do
End If
Put #1,, acctno(X)
Loop
filepos=Loc(1)
Close #1
MsgBox "The offset is: " & filepos
Kill "CA\TEMP001"

End Sub

373

' Lock Function Example

‘This example locks a file that is shared by others on a network, if the file is already in use. The
second subprogram, CREATEFILE, creates the file used by the main subprogram.

Declare Sub createfile
Sub main
Dim btngrp, icongrp
Dim defgrp
Dim answer
Dim noaccess as Integer
Dim msgabort
Dim msgstop as Integer
Dim acctname as String
noaccess=70
msgstop=16
Call createfile
On Error Resume Next
btngrp=1
icongrp=64
defgrp=0
answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
If answer=1 then
Open "CATEMPOO01" for Input as #1
If Err=noaccess then
msgabort=MsgBox("File Locked",msgstop,"Aborted")
Else
Lock #1
Line Input #1, acctname
MsgBox "The first account name is: " & acctname
Unlock #1
End If

Close #1

374

End If
Kill "C:\TEMPOQO1"

End Sub

Sub createfile()
Rem Put the letters A-J into the file
Dim x as Integer
Open "C\TEMPO001" for Output as #1
For x=1to 10
Write #1, Chr(x+64)
Next X
Close #1

End Sub

' Lof Function Example

"This example opens a file and prints its contents to the screen.
Sub main
Dim fname
Dim fchar()
Dim x as Integer
Dim msgtext
Dim newline
newline=Chr(10)
fname=InputBox("Enter a filename to print:")
On Error Resume Next
Open fname for Input as #1
If Err<>0 then
MsgBox "Error loading file. Re-run program.”
Exit Sub
End If

msgtext=""The contents of " & fname & " is: " & newline &newline

375

Redim fchar(Lof(1))

For x=1 to Lof(1)
fchar(X)=Input(1,#1)
msgtext=msgtext & fchar(x)

Next X

MsgBox msgtext

Close #1

End Sub

' Log Function Example

"This example uses the Log function to determine which number is larger: 9991000 (999 to the
1000 power) or 10007999 (1000 to the 999 power). Note that you cannot use the exponent (*)
operator for numbers this large.

Sub main
Dim x
Dimy
x=999
y=1000
a=y*(Log(x))
b=x*(Log(y))
If a>b then
MsgBox "99971000 is greater than 10007999
Else
MsgBox "1000"999 is greater than 9991000
End If

End Sub

' Lset Statement Example

‘This example puts a user's last name into the variable LASTNAME. If the name is longer than the
size of LASTNAME, then the user's name is truncated. If you have a long last name and you get lots
of junk mail, you've probably seen how this works already.

Sub main
Dim lastname as String

Dim strlast as String*8

376

lastname=InputBox("Enter your last name")
Lset strlast=lastname

msgtext="Your last name is: " &strlast
MsgBox msgtext

End Sub

" LTrim Function Example

"This example trims the leading spaces from a string padded with spaces on the left.
Sub main
Dim userinput as String
Dim numsize
Dim strl as String*50
Dim strsize
strsize=50
userinput=InputBox("Enter a string of characters:")
numsize=Len(userinput)
strl=Space(strsize-numsize) & userinput
' Strl has a variable number of leading spaces.
MsgBox "The string is: " &strl
stri=LTrim$(strl)
' Strl now has no leading spaces.
MsgBox "The string now has no leading spaces: " & strl

End Sub

' Mid Statement Example
"This example uses the Mid statement to replace the last name in a user-entered string to asterisks
().
Sub main
Dim username as String
Dim position as Integer

Dim count as Integer

Dim uname as String

377

Dim replacement as String
username=InputBox("Enter your full name:")
uname=username
replacement="*"
Do
position=InStr(username," ")
If position=0 then
Exit Do
End If
username=Mid(username,position+1)
count=count+position
Loop
For x=1 to Len(username)
count=count+1
Mid(uname,count)=replacement
Next x
MsgBox "Your name now is: " & uname

End Sub

' Mid Function Example

"This example uses the Mid function to find the last name in a string entered by the user.
Sub main
Dim username as String
Dim position as Integer
username=InputBox("Enter your full name:")
Do
position=InStr(username," ")
If position=0 then
Exit Do
End If

position=position+1

378

username=Mid(username,position)
Loop
MsgBox "Your last name is: " & username

End Sub

' Minute Function Example

"This example extracts just the time (hour, minute, and second) from a file's last modification date
and time.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec

Dim msgtext as String

: msgtext="Enter a filename:"
filename=InputBox(msgtext)
If filename=""" then

Exit Sub
End If
On Error Resume Next
ftime=FileDateTime(filename)
If Err<>0 then

MsgBox "Error in file name. Try again."”
Goto i:

End If

hr=Hour(ftime)

min=Minute(ftime)

sec=Second(ftime)

Msgbox "The file's time is: " & hr &":" &min &":" &sec

End Sub

379

" MKDir Statement Example

"This example makes a new temporary directory in C:\ and then deletes it.

Sub main

End Sub

Dim path as String

On Error Resume Next

path=CurDir(C)

If path<>"C:\" then
ChDir "C:\"

End If

MkDir "C:\TEMP01"

If Err=75 then

MsgBox "Directory already exists"

Else
MsgBox "Directory C:\TEMPO01 created"
MsgBox "Now removing directory"
RmDir "C\TEMPO1"

End If

' Month Function Example
"This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main

380

Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5
X=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)

MsgBox msgtext

End Sub

' Msgbox Function Example
‘This example displays one of each type of message box.

Sub main
Dim btngrp as Integer
Dim icongrp as Integer
Dim defgrp as Integer
Dim msgtext as String
icongrp=16
defgrp=0
btngrp=0
Do Until btngrp=6
Select Case btngrp
Case 1,4,5
defgrp=0
Case 2
defgrp=256
Case 3
defgrp=512
End Select
msgtext=""Icon group =" & icongrp & Chr(10)
msgtext=msgtext + " Button group =" & btngrp & Chr(10)
msgtext=msgtext + * Default group =" & defgrp & Chr(10)
msgtext=msgtext + Chr(10) + " Continue?"
answer=MsgBox(msgtext, btngrp+icongrp+defgrp)
Select Case answer
Case 2,3,7
Exit Do
End Select

If icongrp<>64 then

381

icongrp=icongrp+16
End If
btngrp=btngrp+1
Loop
End Sub

' Msgbox Statement Example

"This example finds the future value of an annuity, whose terms are defined by the user. It uses the
MsgBox statement to display the result.

Sub main
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext
annuitypv=InputBox("Enter present value of the annuity: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
periods=InputBox("Enter the total number of pay periods: ")
payment=InputBox("Enter the initial amount paid to you: ™)
Rem Assume payments are made at end of month
due=0
futurevalue=FV (aprate/12,periods,-payment,-annuitypv,due)
msgtext="The future value is: " & Format(futurevalue, "Currency")
MsgBox msgtext

End Sub

' Name Statement Example

"This example creates a temporary file, CATEMPO0O0L, renames the file to C:\TEMPO002, then deletes
them both. It calls the subprogram, CREATEFILE, to create the C:\TEMPOOL1 file.

Declare Sub createfile()

Sub main

382

Call createfile

On Error Resume Next

Name "CA\TEMPO001" As "C:\TEMP002"
MsgBox "The file has been renamed"
MsgBox "Now deleting both files"

Kill "TEMPOO1"

Kill "TEMP002"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Dim y()
Dim startletter
Open "C\TEMPO001" for Output as #1
For x=11t0 10
Write #1, x
Next x
Close #1

End Sub

' New Operator Example
(None)

NoCStrings Metacommand Example

"This example displays two lines, the first time using the C-language characters "\n" for a carriage
return and line feed.

Sub main
'$CStrings
MsgBox "This is line 1\n This is line 2 (using C Strings)"
'$NoCStrings

MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"

383

End Sub

' Nothing Function Example

"This example displays a list of open files in the software application VISIO. It uses the Nothing
function to determine whether VISIO is available. To see how this example works, you need to start
VISIO and open one or more documents.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String

Dim i as Integer, doccount as Integer

'Initialize Visio
Set visio = GetObject(,"visio.application™) ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) 'access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext
End Sub

384

" Now Function Example
‘This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5
X=x+1
Loop
msgtext="This Thursday is: " &Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext

End Sub

" NPV Function Example

"This example finds the net present value of an investment, given a range of cash flows by the user.
Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods™)
ReDim varray(cflowper)
For x= 1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #* & x & ":")
Next X
aprate=InputBox("Enter discount rate: ")
If aprate>1 then
aprate=aprate/100
End If

385

netpv=NPV (aprate,varray())
MsgBox "The net present value is: "' & Format(netpv, "Currency")

End Sub

" Null Function Example

"This example asks for ten test score values and calculates the average. If any score is negative, the
value is set to Null. Then IsNull is used to reduce the total count of scores (originally 10) to just
those with positive values before calculating the average.

Sub main
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count=10
total=0
For x=1 to count
tscore=InputBox("Enter test score #" & x & ":")
If tscore<0 then
arrayvar(x)=Null
Else
arrayvar(x)=tscore
total=total+arrayvar(x)
End If
Next X
Do While x<>0
x=x-1
If IsNull(arrayvar(x))=-1 then
count=count-1
End If
Loop

msgtext=""The average (excluding negative values) is: " & Chr(10)

386

msgtext=msgtext & Format (total/count, "##.##")
MsgBox msgtext

End Sub

' Object Class Example

"This example displays a list of open files in the software application VISIO. It uses the Object class
to declare the variables used for accessing VISIO and its document files and methods.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String

Dim i as Integer, doccount as Integer

"Initialize Visio
Set visio = GetObject(,"visio.application™) ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) 'access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If

MsgBox msgtext

387

End Sub

' Oct Function Example

"This example prints the octal values for the numbers from 1 to 15.
Sub main
Dim x,y
Dim msgtext
Dim nofspaces
msgtext="0ctal numbers from 1 to 15:" & Chr(10)
For x=1to 15
nofspaces=10
y=0ct(x)
If Len(x)=2 then
nofspaces=nofspaces-2
End If
msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y
Next X
MsgBox msgtext

End Sub

' OKButton Statement Example

"This example defines a dialog box with a dropcombo box and the OK and Cancel buttons.
Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "VCBasic Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OKButton 131, 8, 42, 13

CancelButton 131, 27, 42, 13

388

End Dialog

Dim mydialogbox As UserDialog
Dialog mydialoghox
If Err=102 then

MsgBox "You pressed Cancel."
Else

MsgBox "You pressed OK."
End If

End Sub

' On ..Goto Statement Example

"This example sets the current system time to the user's entry. If the entry cannot be converted to a
valid time value, this subroutine sets the variable to Null. It then checks the variable and if it is Null,
uses the On...Goto statement to ask again.
Sub main
Dim answer as Integer
answer=InputBox("Enter a choice (1-3) or 0 to quit")
On answer Goto c1, ¢2, ¢3
MsgBox("You typed 0.")
Exit Sub
cl: MsgBox("You picked choice 1.")
Exit Sub
c2: MsgBox("You picked choice 2.")
Exit Sub
c3: MsgBox("You picked choice 3.")
Exit Sub

End Sub

" On Error Statement Example

"This example prompts the user for a drive and directory name and uses On Error to trap invalid
entries.

Sub main

Dim userdrive, userdir, msgtext

389

inl: userdrive=InputBox("Enter drive:",,"C:")
On Error Resume Next
ChDrive userdrive
If Err=68 then
MsgBox "Invalid Drive. Try again."
Goto inl
End If
in2: On Error Goto Errhdlrl
userdir=InputBox("Enter directory path:")
ChDir userdrive & userdir
Msgbox "New default directory is: " & userdrive & userdir
Exit Sub
Errhdirl:
Select Case Err
Case 75
msgtext="Path is invalid."
Case 76
msgtext="Path not found."
Case 70
msgtext="Permission denied."
Case Else
msgtext="Error " & Err & ": " & Error$ & "occurred."”
End Select
MsgBox msgtext & " Try again."”
Resume in2

End Sub

' Open Statement Example

"This example opens a file for Random access, gets the contents of the file, and closes the file again.
The second subprogram, CREATEFILE, creates the file C\TEMPO001 used by the main
subprogram.

Declare Sub createfile()

390

Sub main
Dim acctno as String*3
Dim recno as Long
Dim msgtext as String
Call createfile
recno=1

newline=Chr(10)

Open "CA\TEMPO001" For Random As #1 Len=3

msgtext="The account numbers are:" & newline

Do Until recno=11
Get #1,recno,acctno
msgtext=msgtext & acctno
recno=recno+1

Loop

MsgBox msgtext

Close #1

Kill "CA\TEMP001"

End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C\TEMPO001" for Output as #1
For x=1to 10
Write #1, x
Next x
Close #1

End Sub

391

' OptionButton Statement Example

"This example creates a dialog box with a group box with two option buttons: "All pages" and
"Range of pages".

Sub main
Begin Dialog UserDialog 183, 70, "VCBasic Dialog Box"
GroupBox 5, 4, 97, 57, "File Range"
OptionGroup .OptionGroup2
OptionButton 16, 12, 46, 12, "All pages", .OptionButton3
OptionButton 16, 28, 67, 8, "Range of pages”, .OptionButton4
Text 22, 39, 20, 10, "From:", .Text6
Text 60, 39, 14, 9, "To:", .Text7
TextBox 76, 39, 13, 12, .TextBox4
TextBox 44, 39, 12, 11, .TextBox5
OKButton 125, 6, 54, 14
CancelButton 125, 26, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled.”
End If

End Sub

" OptionGroup Statement Example

"This example creates a dialog box with a group box with two option buttons: "All pages" and
"Range of Pages".

Sub main
Begin Dialog UserDialog 192, 71, "VCBasic Dialog Box"
GroupBox 7, 6, 97, 57, "File Range"
OptionGroup .OptionGroup2

OptionButton 18, 14, 46, 12, "All pages", .OptionButton3

392

OptionButton 18, 30, 67, 8, "Range of pages", .OptionButton4
Text 24, 41, 20, 10, "From:", .Text6
Text 62,41, 14,9, "To:", .Text7
TextBox 78, 41, 13, 12, .TextBox4
TextBox 46, 41, 12, 11, .TextBox5
OKButton 126, 6, 54, 14
CancelButton 126, 26, 54, 14

End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

' Option Base Statement Example
"This example resizes an array if the user enters more data than can fit in the array. It uses LBound
and UBound to determine the existing size of the array and ReDim to resize it. Option Base sets the
default lower bound of the array to 1.
Option Base 1
Sub main
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total=0
x=1
count=InputBox("How many test scores do you have?")
ReDim arrayvar(count)

start:

393

Do until x=count+1
arrayvar(x)=InputBox("Enter test score #" &x & ":")
X=x+1
Loop
answer=InputBox$("Do you have more scores? (Y/N)")
If answer="Y" or answer="y" then
count=InputBox("How many more do you have?")
If count<>0 then
count=count+(x-1)
ReDim Preserve arrayvar(count)
Goto start
End If
End If
x=LBound(arrayvar,1)
count=UBound(arrayvar,1)
For y=x to count
total=total+arrayvar(y)
Nexty
MsgBox "The average of " & count & " scores is: "' & Int(total/count)

End Sub

' Option Compare Statement Example

"This example compares two strings: "JANE SMITH" and "jane smith". When Option Compare is
Text, the strings are considered the same. If Option Compare is Binary, they will not be the same.
Binary is the default. To see the difference, run the example once, then run it again, commenting out
the Option Compare statement.

Option Compare Text
Sub main
Dim strgl as String
Dim strg2 as String
Dim retvalue as Integer

strg1="JANE SMITH"

394

strg2="jane smith"

retvalue=StrComp(strgl,strg2)
If retvalue=0 then
MsgBox "The strings are identical"
Else
MsgBox "The strings are not identical"
Exit Sub
End If

End Sub

" Option Explicit Statement Example

"This example specifies that all variables must be explicitly declared, thus preventing any mistyped
variable names.

Option Explicit
Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
"...(code here)...

End Sub

' PasswordBox Function Example

"This example asks the user for a password.
Sub main
Dim retvalue
Dim a
retvalue=PasswordBox("Enter your login password",Password)
If retvalue<>"" then
MsgBox "Verifying password"
(continue code here)

Else

395

MsgBox "Login cancelled"
End If

End Sub

' Picture Statement Example

"This example defines a dialog box with a picture, an OK button, and a Cancel button.
Sub main
Begin Dialog UserDialog 148, 73, "VCBasic Dialog Box"
Picture 8,7, 46, 46, "C:\WINDOWS\CIRCLES.BMP", 0
OKButton 80, 10, 54, 14
CancelButton 80, 30, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

" Pmt Function Example

"This example finds the monthly payment on a given loan.
Sub main

Dim aprate, totalpay

Dim loanpv, loanfv

Dim due, monthlypay

Dim yearlypay, msgtext

loanpv=InputBox("Enter the loan amount: ")

aprate=InputBox("Enter the loan rate percent: ")

If aprate >1 then

aprate=aprate/100

End If

396

totalpay=InputBox("Enter the total number of monthly payments: ")
loanfv=0

'Assume payments are made at end of month
due=0
monthlypay=Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
msgtext=""The monthly payment is: " & Format(monthlypay, "Currency")
MsgBox msgtext

End Sub

' PPmt Function Example

"This example finds the principal portion of a loan payment amount for payments made in last month
of the first year. The loan is for $25,000 to be paid back over 5 years at 9.5% interest.

Sub main
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, principal
Dim msgtext
aprate=9.5/100
payperiod=12
periods=120
loanpv=25000
loanfv=0
Rem Assume payments are made at end of month
due=0
principal=PPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
msgtext="Given a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
msgtext=msgtext & " the principal paid in month 12 is: "
MsgBox msgtext & Format(principal, "Currency")

End Sub

397

' Print Statement Example

"This example prints the octal values for the numbers from 1 to 25.
Sub main
Dim x as Integer
Dimy
For x=1to 25
y=0ct$(x)
Print x Tab(10) y
Next x

End Sub

' PushButton Statement Example

"This example defines a dialog box with a combination list box and three buttons.

Sub main
Dim fchoices as String
fchoices="Filel" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "VCBasic Dialog Box"
Text 9,5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OKButton 113, 14, 54,13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

398

' Put Statement Example

‘This example opens a file for Random access, puts the values 1-10 in it, prints the contents, and
closes the file again.

Sub main
" Put the numbers 1-10 into a file
Dimx,y
Open "CA\TEMPOO01" as #1
For x=1to 10
Put #1,x, X
Next x
msgtext="The contents of the file is:" & Chr(10)
For x=1to 10
Get #1,x,y
msgtext=msgtext & y & Chr(10)
Next x
Close #1
MsgBox msgtext
Kill "CATEMPOO1"

End Sub

' PV Function Example

"This example finds the present value of a 10-year $25,000 annuity that will pay $1,000 a year at
9.5%.

Sub main
Dim aprate, periods
Dim payment, annuityfv
Dim due, presentvalue
Dim msgtext
aprate=9.5
periods=120
payment=1000
annuityfv=25000

399

Rem Assume payments are made at end of month
due=0
presentvalue=PV (aprate/12,periods,-payment, annuityfv,due)
msgtext= "The present value for a 10-year $25,000 annuity @ 9.5%"
msgtext=msgtext & " with a periodic payment of $1,000 is: "
msgtext=msgtext & Format(presentvalue, "Currency")
MsgBox msgtext

End Sub

' Randomize Statement Example

"This example generates a random string of characters using the Randomize statement and Rnd
function. The second For...Next loop is to slow down processing in the first For...Next loop so that
Randomize can be seeded with a new value each time from the Timer function.
Sub main
Dim x as Integer
Dimy
Dim strl as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext
upper=Asc("z"
lower=Asc("a")
newline=Chr(10)
For x=1 to 26
Randomize timer() + x*255
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
stri=strl & letter
Fory =1to 1500

Next y

400

Next X

msgtext=strl

MsgBox msgtext
End Sub

' Rate Function Example
"This example finds the interest rate on a 10-year $25,000 annuity, that pays $100 per month.

Sub main
Dim aprate
Dim periods
Dim payment, annuitypv
Dim annuityfv, due
Dim guess
Dim msgtext as String
periods=120
payment=100
annuitypv=0
annuityfv=25000
guess=.1
Rem Assume payments are made at end of month
due=0
aprate=Rate(periods,-payment,annuitypv,annuityfv, due, guess)
aprate=(aprate*12)
msgtext= "The percentage rate for a 10-year $25,000 annuity "
msgtext=msgtext & "“that pays $100/month has "
msgtext=msgtext & "a rate of: " & Format(aprate, "Percent")
MsgBox msgtext
End Sub

' ReDim Statement Example

"This example finds the net present value for a series of cash flows. The array variable that holds the
cash flow amounts is initially a dynamic array that is redimensioned after the user enters the number
of cash flow periods they have.

401

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods:")
ReDim varray(cflowper)
For x=1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #" &x &'":")
Next X
aprate=InputBox ("Enter discount rate:")
If aprate>1 then
aprate=aprate/100
End If
netpv=NPV (aprate,varray())
MsgBox "The Net Present Value is: " & Format(netpv,"Currency")

End Sub

' Rem Statement Example

"This example defines a dialog box with a combination list box and two buttons. The Rem
statements describe each block of definition code.

Sub main
Dim fchoices as String
fchoices="Filel" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "VCBasic Dialog Box"
Rem The next two lines create the combo box
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
Rem The next two lines create the command buttons

OKButton 113, 14, 54, 13

402

CancelButton 113, 33, 54, 13
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then

MsgBox "Dialog box canceled."
End If

End Sub

' Reset Statement Example

"This example creates a file, puts the numbers 1-10 in it, then attempts to Get past the end of the file.
The On Error statement traps the error and execution goes to the Debugger code which uses Reset to
close the file before exiting.
Sub main
" Put the numbers 1-10 into a file
Dim x as Integer
Dimyy as Integer
On Error Goto Debugger
Open "CA\TEMPOO1" as #1 Len=2
For x=1to 10
Put #1,x, x
Next x
Close #1
msgtext=""The contents of the file is:" & Chr(10)
Open "CA\TEMPOO01" as #1 Len=2
For x=1to 10
Get #1,x,y
msgtext=msgtext & Chr(10) & y
Next X
MsgBox msgtext

done:

403

Close #1
Kill "C\TEMP001"
Exit Sub
Debugger:
MsgBox "Error " & Err & " occurred. Closing open file."
Reset
Resume done

End Sub

' Resume Statement Example
"This example prints an error message if an error occurs during an attempt to open a file. The
Re;ume statement jumps back into the program code at the label, done. From here, the program
exits.
Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input.”
' ..etc....
Close #1
done:
Exit Sub
Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext

Resume done

End Sub

' Right Function Example

"This example checks for the extension .BMP in a filename entered by a user and activates the
Paintbrush application if the file is found. Note this uses the Option Compare statement to accept
either uppercase or lowercase letters for the filename extension.

404

Option Compare Text
Sub main
Dim filename as String
Dim x
filename=InputBox("Enter a .BMP file and path: ")
extension=Right(filename,3)
If extension="BMP" then
Shell "PBrush"
Forl=1to 10
DoEvents
Next i
AppActivate "untitled - Paint"
DoEvents
Sendkeys "%FO" & filename & "{Enter}", 1
Else
MsgBox "File not found or extension not .BMP."
End If

End Sub

' RmDir Statement Example

"This example makes a new temporary directory in C:\ and then deletes it.
Sub main

Dim path as String

On Error Resume Next

path=CurDir(C)

If path<>"C:\" then

ChDir "C:\"

End If

MkDir "C:\TEMPOQ1"

If Err=75 then

MsgBox "Directory already exists"

405

Else
MsgBox "Directory C\TEMPO1 created"
MsgBox "Now removing directory"
RmDir "CA\TEMPO1"

End If

End Sub

' Rnd Function Example

"This example generates a random string of characters within a range. The Rnd function is used to
set the range between lowercase "a" and "z". The second For...Next loop is to slow down processing
in the first For...Next loop so that Randomize can be seeded with a new value each time from the
Timer function.
Sub main
Dim x as Integer
Dimy
Dim strl as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext
upper=Asc("z"
lower=Asc("a")
newline=Chr(10)
For x=1 to 26
Randomize timer() + x*255
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter
Fory =1 to 1500
Next y

Next x

406

msgtext=strl
MsgBox msgtext

End Sub

' Rset Statement Example

"This example uses Rset to right-align an amount entered by the user in a field that is 15 characters
long. It then pads the extra spaces with asterisks (*) and adds a dollar sign ($) and decimal places (if
necessary).

Sub main

Dim amount as String*15

Dim x

Dim msgtext

Dim replacement

replacement="*"

amount=InputBox("Enter an amount:")

position=InStr(amount,".")

If Right(amount,3)<>".00" then
amount=Rtrim(amount) & ".00"

End If

Rset amount="$" & Rtrim(amount)

length=15-Len(Ltrim(amount))

For x=1 to length
Mid(amount,x)=replacement

Next X

Msgbox "Formatted amount: " & amount

End Sub

" RTrim Function Example

"This example asks for an amount and then right-aligns it in a field that is 15 characters long. It uses
Rtrim to trim any trailing spaces in the amount string, if the number entered by the user is less than
15 digits.
Sub main

Dim amount as String*15

Dim x

407

Dim msgtext

Dim replacement

replacement="X"

amount=InputBox("Enter an amount:")

position=InStr(amount,".")

If position=0 then
amount=Rtrim(amount) & ".00"

End If

Rset amount="$" & Rtrim(amount)

length=15-Len(Ltrim(amount))

For x=1 to length
Mid(amount,x)=replacement

Next x

Msgbox "Formatted amount: " & amount

End Sub

* Second Function Example

"This example displays the last saved date and time for a file whose name is entered by the user.
Sub main

Dim filename as String

Dim ftime

Dim hr, min

Dim sec

Dim msgtext as String

: msgtext="Enter a filename:"
filename=InputBox(msgtext)
If filename=""then

Exit Sub
End If
On Error Resume Next

ftime=FileDate Time(filename)

408

If Err<>0 then
MsgBox "Error in file name. Try again."
Goto i:
End If
hr=Hour(ftime)
min=Minute(ftime)
sec=Second(ftime)
Msgbox "The file's time is: " & hr &":" &min &":" &sec

End Sub

' Seek Function Example

‘This example reads the contents of a sequential file line by line (to a carriage return) and displays
the results. The second subprogram, CREATEFILE, creates the file "C:\TEMPQ01" used by the

main subprogram.
Declare Sub createfile
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline
Call createfile
Open "CA\TEMPOO01" for Input as #1
x=1
newline=Chr(10)
msgtext= "The test scores are: " & newline
Do Until x=Lof(1)
Line Input #1, testscore
X=x+1
y=Seek(1)
If y>Lof(1) then
x=Lof(1)

Else

409

Seek 1,y
End If
msgtext=msgtext & newline & testscore
Loop
MsgBox msgtext
Close #1
Kill "CA\TEMP001"

End Sub

Sub createfile()
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "C\TEMPO001" for Output as #1
For x=10 to 100 step 10
Write #1, X
Next x
Close #1

End Sub

' Seek Statement Example

"This example reads the contents of a sequential file line by line (to a carriage return) and displays
the results. The second subprogram, CREATEFILE, creates the file "C\TEMP001" used by the

main subprogram.
Declare Sub createfile
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline
Call createfile
Open "C\TEMPO001" for Input as #1

x=1

410

newline=Chr(10)
msgtext= "The test scores are: " & newline
Do Until x=Lof(1)
Line Input #1, testscore
X=x+1
y=Seek(1)
If y>Lof(1) then
x=Lof(1)
Else
Seek 1,y
End If
msgtext=msgtext & newline & testscore
Loop
MsgBox msgtext
Close #1
Kill "CATEMPOO1"

End Sub

Sub createfile()
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "CA\TEMPO0O01" for Output as #1
For x=10 to 100 step 10
Write #1, x
Next X
Close #1

End Sub

' Select Case Statement Example

"This example tests the attributes for a file and if it is hidden, changes it to a non-hidden file.

Sub main

411

Dim filename as String
Dim attribs, saveattribs as Integer
Dim answer as Integer
Dim archno as Integer
Dim msgtext as String
archno=32
On Error Resume Next
msgtext="Enter name of a file:"
filename=InputBox(msgtext)
attribs=GetAttr(filename)
If Err<>0 then
MsgBox "Error in filename. Re-run Program."
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"
answer=Msgbox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed."

Case Else

412

MsgBox "File was not hidden."
End Select

End Sub

' SendKeys Statement Example

"This example activates the Windows 95 Phone Dialer application, dials the number and then allows
the operating system to process events.

Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Dialer.exe",1)
Fori=1to5
DoEvents
Next i
AppActivate "Phone Dialer"
SendKeys phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext
DoEvents

End Sub

' Set Statement Example

"This example displays a list of open files in the software application, VISIO. It uses the Set
statement to assign VISIO and its document files to object variables. To see how this example
works, you need to start VISIO and open one or more documents.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String

Dim i as Integer, doccount as Integer

'Initialize Visio

413

Set visio = GetObject(,"visio.application™) ' find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLEZ2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i = 1 to doccount
Set doc = visio.documents(i) 'access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext

End Sub

' SetAttr Statement Example

"This example tests the attributes for a file and if it is hidden, changes it to a normal (not hidden) file.
Sub main

Dim filename as String

Dim attribs, saveattribs as Integer

Dim answer as Integer

Dim archno as Integer

Dim msgtext as String

archno=32

On Error Resume Next

msgtext="Enter name of a file:

filename=InputBox(msgtext)

414

attribs=GetAttr(filename)
If Err<>0 then
MsgBox "Error in filename. Re-run Program."
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext=""File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"
answer=Msgbox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed."
Case Else
MsgBox "File was not hidden."
End Select

End Sub

' SetField Function Example

"This example extracts the last name from a full name entered by the user.
Sub main

Dim username as String

Dim position as Integer

username=InputBox("Enter your full name:")

415

Do
position=InStr(username," ")
If position=0 then
Exit Do
End If
username=SetField(username,1," "," ")
username=Ltrim(username)
Loop
MsgBox "Your last name is: "' & username

End Sub

' Sgn Function Example

"This example tests the value of the variable profit and displays 0 for profit if it is a negative number.
The subroutine uses Sgn to determine whether profit is positive, negative or zero.

Sub main

Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ')
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

MsgBox "Yeah! We turned a profit!"
Elself Sgn(profit)=0 then

MsgBox "Okay. We broke even."
Else

MsgBox "Uh, oh. We lost money."
End If

End Sub
' Shell Function Example

"This example activates the Windows 95 Phone Dialer application, dials the number and then allows
the operating system to process events.

416

Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Dialer.exe",1)
Fori=1to5
DoEvents
Next i
AppActivate "Phone Dialer"
SendKeys phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext
DoEvents

End Sub

' Sin Function Example
"This example finds the height of the building, given the length of a roof and the roof pitch.

Sub main
Dim height, rooflength
Dim pitch
Dim msgtext
Const P1=3.14159
Const conversion= PI1/180
pitch=InputBox("Enter the roof pitch in degrees:")
pitch=pitch*conversion
rooflength=InputBox("Enter the length of the roof in feet:")
height=Sin(pitch)*rooflength
msgtext=""The height of the building is "
msgtext=msgtext & Format(height, "##.##") & " feet."
MsgBox msgtext

End Sub

417

' Space Function Example

"This example prints the octal numbers from 1 to 15 as a two-column list and uses Space to separate
the columns.

Sub main

Dim x,y
Dim msgtext
Dim nofspaces
msgtext="0ctal numbers from 1 to 15:" & Chr(10)
For x=1to 15

nofspaces=10

y=0ct(x)

If Len(x)=2 then

nofspaces=nofspaces-2

End If

msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y
Next X
MsgBox msgtext

End Sub

' Spc Function Example

"This example puts five spaces and the string "ABCD" to a file. The five spaces are derived by taking
15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
Dim strl as String
Dim x as String*10
str1="ABCD"
Open "CA\TEMPO001" For Output As #1
Width #1, 10
Print #1, Spc(15); strl
Close #1
Open "CA\TEMPOO1" as #1 Len=12

Get #1, 1,x

418

Msgbox "The contents of the file is: " & x
Close #1
Kill "C:\TEMPOO1"

End Sub

' SQLClose Function Example

‘This example opens the data source named "VCBasicTest," gets the names in the ODBC data
sources, and closes the connection.

Sub main
' Declarations
Dim outputStr As String
Dim connection As Long
Dim prompt As Integer
Dim datasources(1 To 50) As Variant

Dim retcode As Variant

prompt =5
' Open the datasource "VCBasicTest"

connection = SQLOpen("DSN=VCBasicTest", outputStr, prompt:=5)

actionl = 1 ' Get the names of the ODBC datasources

retcode = SQLGetSchema(connection:=connection,action:=1, qualifier:=qualifier,
ref:=datasources())

' Close the datasource connection

retcode = SQLClose(connection)

End Sub

" SQLError Function Example

"This example forces an error to test SQLError function.

sub main

419

' Declarations

Dim connection As long

Dim prompt as integer

Dim retcode as long

Dim errors(1 To 3, 1 To 10) as Variant
" Open the datasource
connection = SQLOpen("DSN=VCBasicTESTW;UID=DBA;PWD=SQL",outputStr,prompt:=3)
' force an error to test SQLError select a nonexistent table
retcode = SQLExecQuery(connection:=connection,query:="select * from notable ")
' Retrieve the detailed error message information into the errors array
SQLError destination:=errors
retcode = SQLClose(connection)

end sub

' SQLExecQuery Function Example
‘This example performs a query on the data source.
Sub main

Declarations
Dim connection As Long
Dim destination(1 To 50, 1 To 125) As Variant

Dim retcode As long

open the connection

connection = SQLOpen("DSN=VCBasicTest",outputStr,prompt:=3)

Execute the query

guery = "select * from customer"

420

retcode = SQLExecQuery(connection,query)

" retrieve the first 50 rows with the first 6 columns of each row into
the array destination, omit row numbers and put column names in the

first row of the array

retcode = SQLRetrieve(connection:=connection,destination:=destination,
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6,fetchFirst:=0)

' Get the next 50 rows of from the result set

retcode = SQLRetrieve(connection:=connection,destination:=destination,
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6)

" Close the connection

retcode = SQLClose(connection)

End Sub

' SQLGetSchema Function Example

"This example opens the data source named "VCBasicTest," gets the names in the ODBC data
sources, and closes the connection.

Sub main
' Declarations
Dim outputStr As String
Dim connection As Long
Dim prompt As Integer
Dim datasources(1 To 50) As Variant

Dim retcode As Variant

prompt =5

" Open the datasource "VCBasicTest"

421

connection = SQLOpen("DSN=VCBasicTest", outputStr, prompt:=5)

actionl = 1 ' Get the names of the ODBC datasources

retcode = SQLGetSchema(connection:=connection,action:=1, qualifier:=qualifier,
ref:=datasources())

' Close the datasource connection

retcode = SQLClose(connection)

End Sub

' SQLOpen Function Example

"This example opens the data source named "VCBasicTest," gets the names in the ODBC data
sources, and closes the connection.

Sub main
' Declarations
Dim outputStr As String
Dim connection As Long
Dim prompt As Integer
Dim datasources(1 To 50) As Variant

Dim retcode As Variant
prompt =5
' Open the datasource "VCBasicTest"

connection = SQLOpen("DSN=VCBasicTest", outputStr, prompt:=5)

actionl = 1 ' Get the names of the ODBC datasources

retcode = SQLGetSchema(connection:=connection,action:=1, qualifier:=qualifier,
ref:=datasources())

' Close the datasource connection

422

retcode = SQLClose(connection)

End Sub

' SQLRequest Function Example

"This example will open the datasource VCBasicTESTW and execute the query specified by query
and return the results in destination

Sub main

' Declarations
Dim destination(1 To 50, 1 To 125) As Variant
Dim prompt As integer

The following will open the datasource VCBasicTESTW and execute the query

specified by query and return the results in destination

query = "select * from class"

retcode =
SQLRequest("DSN=VCBasicTESTW;UID=DBA;PWD=SQL",query,outputStr,prompt,0,destinati
on())

End Sub

' SQLRetrieve Function Example

‘This example retrieves information from a data source.
Sub main
' Declarations
Dim connection As Long
Dim destination(1 To 50, 1 To 125) As Variant
Dim retcode As long

open the connection

423

connection = SQLOpen("DSN=VCBasicTest",outputStr,prompt:=3)

Execute the query
query = "select * from customer"

retcode = SQLExecQuery(connection,query)

retrieve the first 50 rows with the first 6 columns of each row into

the array destination, omit row numbers and put column names in the

first row of the array

retcode = SQLRetrieve(connection:=connection,destination:=destination,
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6,fetchFirst:=0)

' Get the next 50 rows of from the result set

retcode = SQLRetrieve(connection:=connection,destination:=destination,
columnNames:=1,rowNumbers:=0,maxRows:=50, maxColumns:=6)

" Close the connection
retcode = SQLClose(connection)

End Sub

' SQLRetrieveToFile Function Example

‘This example opens a connection to a data source and retrieves information to a file.
Sub main
' Declarations

Dim connection As Long

Dim destination(1 To 50, 1 To 125) As Variant

Dim retcode As long

' open the connection

424

connection = SQLOpen("DSN=VCBasicTest",outputStr,prompt:=3)

Execute the query

query = "select * from customer"

retcode = SQLExecQuery(connection,query)

Place the results of the previous query in the file named by

filename and put the column names in the file as the first row.

The field delimiter is %

filename = "c:\myfile.txt"
columnDelimiter = "%"

retcode = SQLRetrieveToFile(connection:=connection,destination:=filename,
columnNames:=1,columnDelimiter:=columnDelimiter)

retcode = SQLClose(connection)

End Sub

' Sqr Function Example

"This example calculates the square root of 2 as a double-precision floating point value and displays
it in scientific notation.

Sub main
Dim value as Double
Dim msgtext
value=CDbl(Sqr(2))
msgtext="The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext

End Sub

425

' Static Statement Example

"This example puts account numbers to a file using the record variable GRECORD and then prints
them again.

Type acctrecord
acctno as Integer

End Type

Sub main
Static grecord as acctrecord
Dim x
Dim total
x=1
grecord.acctno=1
On Error Resume Next
Open "C\TEMPO001" For Output as #1
Do While grecord.acctno<>0
i: grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
If Err<>0 then
MsgBox "Error occurred. Try again."
Err=0
Goto i
End If
If grecord.acctno<>0 then
Print #1, grecord.acctno
X=x+1
End If
Loop
Close #1
total=x-1
msgtext="The account numbers are: " & Chr(10)

Open "CATEMPOO1" For Input as #1

426

For x=1 to total
Input #1, grecord.acctno
msgtext=msgtext & Chr(10) & grecord.acctno
Next x
MsgBox msgtext
Close #1
Kill "CA\TEMP001"

End Sub

' StaticComboBox Statement Example

"This example defines a dialog box with a static combo box labeled "Installed Drivers" and the OK
and Cancel buttons.

Sub main

Dim cchoices as String

cchoices="MIDI Mapper"+Chr$(9)+"Timer"

Begin Dialog UserDialog 182, 116, "VCBasic Dialog Box"
StaticComboBox 7, 20, 87, 49, cchoices, .StaticComboBox1
Text 6, 3, 83, 10, "Installed Drivers", .Textl
OKButton 118, 12, 54, 14
CancelButton 118, 34, 54, 14

End Dialog

Dim mydialogbox As UserDialog

Dialog mydialogbox

If Err=102 then
MsgBox "You pressed Cancel."

Else
MsgBox "You pressed OK."

End If

End Sub

' Stop Statement Example

"This example stops program execution at the user's request.

427

Sub main
Dim strl
strl=InputBox("Stop program execution? (Y/N):")
If str1="Y" or str1="y" then
Stop
End If
MsgBox "Program complete."

End Sub

' Str Function Example

"This example prompts for two numbers, adds them, then shows them as a concatenated string.
Sub main

Dim x as Integer

Dimyy as Integer

Dim strl as String

Dim valuel as Integer

x=InputBox("Enter a value for x: ")

y=InputBox("Enter a value for y: ™)

MsgBox "The sum of these numbers is: " & x+y

str1=Str(x) & Str(y)

MsgBox "The concatenated string for these numbers is: " & strl

End Sub

* StrComp Function Example

‘This example compares a user-entered string to the string "Smith".
Option Compare Text
Sub main

Dim lastname as String

Dim smith as String

Dim x as Integer

smith="Smith"

lastname=InputBox("Type your last name")

428

x=StrComp(lastname,smith,1)
If x=0 then
MsgBox "You typed 'Smith’ or 'smith"."
Else
MsgBox "You typed: " & lastname & " not 'Smith"."
End If

End Sub

' String Function Example

"This example places asterisks (*) in front of a string that is printed as a payment amount.
Sub main
Dim strl as String

Dim size as Integer

- strl=InputBox("Enter an amount up to 999,999.99: ")
If Instr(strl,".")=0 then
strl=str1+".00"
End If
If Len(str1)>10 then
MsgBox "Amount too large. Try again."”
Goto i
End If
size=10-Len(strl)
'Print amount in a space on a check allotted for 10 characters
str1=String(size,Asc("*")) & strl
Msgbox "The amount is: $" & strl

End Sub

' Sub...End Sub Function Example

"This example is a subroutine that uses the Sub...End Sub function.
Sub main
MsgBox "Hello, World."

End Sub

429

' Tab Function Statement Example

‘This example prints the octal values for the numbers from 1 to 25. It uses Tab to put five character
spaces between the values.

Sub main
Dim x as Integer
Dimy
For x=1to 25
y=0ct$(x)
Print x Tab(10) y
Next x

End Sub

' Tan Function Example

"This example finds the height of the exterior wall of a building, given its roof pitch and the length of
the building.

Sub main
Dim bldglen, wallht
Dim pitch
Dim msgtext
Const PI=3.14159
Const conversion= PI1/180
On Error Resume Next
pitch=InputBox("Enter the roof pitch in degrees:")
pitch=pitch*conversion
bldglen=InputBox("Enter the length of the building in feet:")
wallht=Tan(pitch)*(bldglen/2)
msgtext="The height of the building is: " & Format(wallht, "##.00")
MsgBox msgtext

End Sub

' Text Statement Example

"This example defines a dialog box with a combination list and text box and three buttons.

Sub main

430

Dim ComboBox1() as String

ReDim ComboBox1(0)

ComboBox1(0)=Dir("C:*.*")

Begin Dialog UserDialog 166, 142, "VVCBasic Dialog Box™
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
OKButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

' TextBox Statement Example
"This example creates a dialog box with a group box, and two buttons.
Sub main
Begin Dialog UserDialog 194, 76, "VCBasic Dialog Box"
GroupBox 9, 8, 97, 57, "File Range"
OptionGroup .OptionGroup2
OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
OptionButton 19, 32, 67, 8, "Range of pages", .OptionButton4
Text 25, 43, 20, 10, "From:", .Text6
Text 63,43, 14,9, "To:", .Text7
TextBox 79, 43, 13, 12, .TextBox4
TextBox 47, 43,12, 11, .TextBox5

OKButton 135, 6, 54, 14

431

CancelButton 135, 26, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then

MsgBox "Dialog box canceled."
End If

End Sub

' Time Function Example

‘This example writes data to a file if it hasn't been saved within the last 2 minutes.
Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dimx, |
tempfile="C\TEMPO001"
Open tempfile For Output As #1
filetime=FileDate Time(tempfile)
x=1
=1
acctno(x)=0
Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
For I=1to x-1
Write #1, acctno(l)

Next |

432

Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I=1 to x
Write #1, acctno(l)
Next |
End If
X=X+1
Loop
Close #1
x=1
msgtext="Contents of CATEMPO0O01 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1
Kill "C\TEMP001"

End Sub

' Time Statement Example

"This example changes the time on the system clock.
Sub main
Dim newtime as String
Dim answer as String
On Error Resume Next
i: newtime=InputBox("What time is it?")
answer=InputBox("ls this AM or PM?")

If answer="PM" or answer="pm" then

433

newtime=newtime &"PM"
End If
Time=newtime
If Err<>0 then
MsgBox "Invalid time. Try again."”
Err=0
Goto i
End If

End Sub

" Timer Function Example

"This example uses Timer Function to find a Megabucks number.
Sub main
Dim msgtext
Dim value(9)
Dim nextvalue
Dim x
Dimy
msgtext=""Your Megabucks numbers are: "
Forx=1to 8
Do
value(x)=Timer
value(x)=value(x)*100
value(x)=Str(value(x))
value(x)=Val(Right(value(x),2))
Loop Until value(x)>1 and value(x)<36
For y=1 to 1500
Next y
Next X
Fory=1to 8

Forx=1to8

434

If y<>x then
If value(y)=value(x) then
value(x)=value(x)+1
End If
End If
Next x
Nexty
Forx=1to 8
msgtext=msgtext & value(x) & " "
Next X

MsgBox msgtext

End Sub

' TimeSerial Function Example

"This example displays the current time using Time Serial.
Sub main
Dimy
Dim msgtext
Dim nowhr
Dim nowmin
Dim nowsec
nowhr=Hour(Now)
nowmin=Minute(Now)
nowsec=Second(Now)
y=TimeSerial(nowhr,nowmin,nowsec)
msgtext="The time is: " &y
MsgBox msgtext
End Sub

' TimeValue Function Example

"This example writes a variable to a disk file based on a comparison of its last saved time and the
current time. Note that all the variables used for the TimeValue function are dimensioned as Double,
so that calculations based on their values will work properly.

435

Sub main
Dim tempfile
Dim ftime
Dim filetime as Double
Dim curtime as Double
Dim minutes as Double
Dim acctno(100) as Integer
Dim x, |
tempfile="C:\TEMPOO1"
Open tempfile For Output As 1
ftime=FileDate Time(tempfile)
filetime=TimeValue(ftime)
minutes= TimeValue("00:02:00")
x=1
1=1
acctno(x)=0
Do
curtime= TimeValue(Time)
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
For I=1 to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself filetime+minutes<=curtime then
For I=1 to X
Write #1, acctno(l)
Next |
End If

X=x+1

436

Loop

Close #1

x=1

msgtext=""You entered:" & Chr(10)

Open tempfile for Input as #1

Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1

Loop

MsgBox msgtext

Close #1

Kill "CATEMPOO1"

End Sub

" Trim Function Example

"This example removes leading and trailing spaces from a string entered by the user.
Sub main

Dim userstr as String

userstr=InputBox("Enter a string with leading/trailing spaces")

MsgBox "The string is: " & Trim(userstr) & " with nothing after it."

End Sub

' Type Statement Example

"This example shows a Type and Dim statement for a record. You must define a record type before
you can declare a record variable. The subroutine then references a field within the record.

Type Testrecord
Custno As Integer
Custname As String

End Type

Sub main

Dim myrecord As Testrecord

437

: myrecord.custname=InputBox("Enter a customer name:")
If myrecord.custname=""'then
Exit Sub
End If
answer=InputBox("Is the name: " & myrecord.custname &" correct? (Y/N)")
If answer="Y" or answer="y" then
MsgBox "Thank you."
Else
MsgBox "Try again."
Goto i
End If

End Sub

' Typeof Statement Example
(None)

" UBound Function Example

"This example resizes an array if the user enters more data than can fit in the array. It uses LBound
and UBound to determine the existing size of the array and ReDim to resize it. Option Base sets the
default lower bound of the array to 1.

Option Base 1
Sub main
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total=0
x=1
count=InputBox("How many test scores do you have?")
ReDim arrayvar(count)
start:

Do until x=count+1

438

arrayvar(x)=InputBox("Enter test score #" &x & ":")
X=x+1
Loop
answer=InputBox$("Do you have more scores? (Y/N)")
If answer="Y" or answer="y" then
count=InputBox("How many more do you have?")
If count<>0 then
count=count+(x-1)
ReDim Preserve arrayvar(count)
Goto start
End If
End If
x=LBound(arrayvar,1)
count=UBound(arrayvar,1)
For y=x to count
total=total+arrayvar(y)
Next y
MsgBox "The average of the " & count & " scores is: " & Int(total/count)

End Sub

" UCase Function Example

"This example converts a filename entered by a user to all uppercase letters.
Option Base 1
Sub main

Dim filename as String

filename=InputBox("Enter a filename: ")

filename=UCase(filename)

MsgBox "The filename in uppercase is: " & filename

End Sub

439

" Unlock Function Example

‘This example locks a file that is shared by others on a network, if the file is already in use. The
second subprogram, CREATEFILE, creates the file used by the main subprogram.

Declare Sub createfile
Sub main
Dim btngrp, icongrp
Dim defgrp
Dim answer
Dim noaccess as Integer
Dim msgabort
Dim msgstop as Integer
Dim acctname as String
noaccess=70
msgstop=16
Call createfile
On Error Resume Next
btngrp=1
icongrp=64
defgrp=0
answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
If answer=1 then
Open "CATEMPOO01" for Input as #1
If Err=noaccess then
msgabort=MsgBox("File Locked",msgstop,"Aborted")
Else
Lock #1
Line Input #1, acctname
MsgBox "The first account name is: " & acctname
Unlock #1
End If

Close #1

440

End If
Kill "C:\TEMPOQO1"

End Sub

Sub createfile()
Rem Put the letters A-J into the file
Dim x as Integer
Open "C\TEMPO001" for Output as #1
For x=1to 10
Write #1, Chr(x+64)
Next X
Close #1

End Sub

' Val Function Example

"This example tests the value of the variable profit and displays 0 for profit if it is a negative number.

The subroutine uses Sgn to determine whether profit is positive, negative or zero.
Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then
MsgBox "Yeah! We turned a profit!"
Elself Sgn(profit)=0 then
MsgBox "Okay. We broke even."
Else
MsgBox "Uh, oh. We lost money."
End If

441

End Sub

"VarType Function Example

"This example returns the type of a variant.
Sub main

Dim x

Dim myarray(8)

Dim retval

Dim retstr

myarray(1)=Null

myarray(2)=0
myarray(3)=39000
myarray(4)=CSng(10"20)
myarray(5)=10"300
myarray(6)=CCur(10.25)
myarray(7)=Now
myarray(8)="Five"

For x=0to 8
retval=Vartype(myarray(x))
Select Case retval

Case 0

retstr=" (Empty)"
Case 1

retstr=" (Null)"
Case 2

retstr=" (Integer)"
Case 3

retstr=" (Long)"
Case 4

retstr="(Single)"

Case 5

442

retstr=" (Double)"
Case 6
retstr=" (Currency)"
Case 7
retstr=" (Date)"
Case 8
retstr=" (String)"
End Select
If retval=1 then
myarray(X)="[null]"

Elself retval=0 then

myarray(X)="[empty]
End If
MsgBox "The variant type for " &myarray(x) & " is: " &retval &retstr
Next x

End Sub

' Weekday Function Example
"This example finds the day of the week on which New Year's Day will fall in the year 2000.

Sub main
Dim newyearsday
Dim daynumber
Dim msgtext
Dim newday as Variant
Const newyear=2000
Const newmonth=1
Let newday=1
newyearsday=DateSerial(newyear,newmonth,newday)
daynumber=Weekday(newyearsday)
msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")

MsgBox msgtext

443

End Sub

While...Wend Structure Example

This example opens a series of customer files and checks for the string "*Overdue*" in each file. It
uses While...Wend to loop through the C:\TEMPO00? files. These files are created by the subroutine
CREATEFILES.

Declare Sub createfiles
Sub main
Dim custfile as String
Dim aline as String
Dim pattern as String
Dim count as Integer
Call createfiles
Chdir "C:\"
custfile=Dir$("TEMP00?")
pattern="*"+ "Overdue" + "*"
While custfile <> "
Open custfile for input as #1
On Error goto atEOF
Do
Line Input #1, aline
If aline Like pattern Then
count=count+1
End If
Loop
nxtfile:
On Error GoTo 0
Close #1
custfile = Dir$
Wend
If count<>0 then

Msgbox "Number of overdue accounts: " & count

444

Else
Msgbox "No accounts overdue”
End If
Kill "CATEMPOO1"
Kill "CA\TEMP002"
Exit Sub
atEOF:
Resume nxtfile

End Sub

Sub createfiles()
Dim odue as String
Dim ontime as String
Dim x
Open "CATEMPOO1" for OUTPUT as #1
odue="*" + "Overdue" + "*"
ontime="*" +"On-Time" + "*"
Forx=1to 3
Write #1, odue
Next x
For x=4 10 6
Write #1, ontime
Next x
Close #1
Open "CATEMP002" for Output as #1
Write #1, odue
Close #1

End Sub

445

" Width Statement Example

"This example puts five spaces and the string "ABCD" to a file. The five spaces are derived by taking
15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
Dim strl as String
Dim x as String*10
str1="ABCD"
Open "CA\TEMPO001" For Output As #1
Width #1, 10
Print #1, Spc(15); strl
Close #1
Open "CA\TEMPOO1" as #1 Len=12
Get #1, 1,x
Msgbox "The contents of the file is: " & x
Close #1
Kill "C\TEMPOO1"

End Sub

With Statement Example

This example creates a user-defined record type, custrecord and uses the With statement to fill in
values for the record fields, for the record called "John".

Type custrecord
name as String
ss as String
salary as Single
dob as Variant
street as String
apt as Variant
city as String
state as String

End Type

Sub main

446

Dim John as custrecord
Dim msgtext
John.name="John"
With John
.85="037-67-2947"
.salary=60000
.dob=#10-09-65#
.Street="15 Chester St."
.apt=28
.city="Cambridge"
.State="MA"
End With
msgtext=Chr(10) & "Name:" & Space(5) & John.name & Chr(10)
msgtext=msgtext & "SS#: " & Space(6) & john.ss & chr(10)
msgtext=msgtext & "D.0.B:" & Space(4) & john.dob
Msgbox "Done with: " & Chr(10) & msgtext
End Sub

Write Statement Example

This example writes a variable to a disk file based on a comparison of its last saved time and the
current time.

Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dim x, |
tempfile="C\TEMPO001"
Open tempfile For Output As #1
filetime=FileDate Time(tempfile)

x=1

447

=1
acctno(x)=0
Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
If x=1 then Exit Sub
For 1=1 to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I1=1to x-1
Write #1, acctno(l)
Next |
End If
X=X+1
Loop
Close #1
x=1
msgtext="Contents of CATEMPO001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1

Kill "C\TEMP001"

448

End Sub

' Year Function Example

"This example returns the year for today.
Sub main
Dim nowyear
nowyear=Year(Now)
MsgBox "The current year is: " &nowyear

End Sub

CrtAttr Example

This example tests if the protected field attribute of row 15, column 20 is set
Sub main
Dim Row as Integer
Dim Col as Integer
Row =15
Col =20
"Test if protected field
If CRTAttr(Row, Col) And 64 Then
MsgBox("Cursor position 15,20 is a protected data field.")
Else
MsgBox("Cursor position 15,20 is an unprotected data field.")
End If

End Sub

CrtCopy Example

This procedure copies screen data to the printer and clipboard
Sub Main

Dim intStart as Integer

Dim intEnd as Integer

Dim intRet as Integer

449

'‘Copy the screen contents to a diskfile

intStart = 0

intEnd = CInt(CrtQuery("HEIGHT")) * CInt(CrtQuery("WIDTH")) - 1
intRet = CrtCopy(intStart, intEnd, 0, "screen.txt")
'Copy the screen contents to the clipboard

intRet = CrtCopy(intStart, intEnd, 0, "C")

'‘Copy the screen contents to the printer

intRet = CrtCopy(intStart, intEnd, 0, "P")

'‘Copy a column of information to the clip board
intStart = CrtPosition(0, 0)

intEnd = CrtPosition(20, 8)

intRet = CrtCopy(intStart, intEnd, 1, "C")

End Sub

CrtEmit Example

Print the current time in the upper right corner of the screen
Sub Main

Dim LineNum as Integer

Dim ColNum as Integer

Dim intRet as Integer

Dim WritePos as Integer

LineNum = CrtRow(-1)

ColNum = CrtCol(-1)

WritePos = CInt(CRTQUERY ("WIDTH")) - 9
reslt% = CrtSetCursor(0, WritePos)

CrtEmit Time$

reslt% = CrtSetCursor(LineNum, ColNum)

End Sub

CrtFieldSearch_Example
This procedure will find all unprotected fields on the display and copy the data to Notepad.

Sub Main

450

Dim FieldType as Integer

Dim DataType as Integer

Dim SearchField as Integer

Dim StartPos as Integer

Dim EndPos as Integer

Dim Message as String

" Find all defined fields on the screen

FieldType =1

DataType =0

Do while CrtFieldSearch(SearchField, 0, FieldType, DataType) <> -1
StartPos = CrtFieldSearch(SearchField, 0, FieldType, DataType)
EndPos = CrtFieldSearch(SearchField, -1, FieldType, DataType)
Message = Message & "Field " & CStr(SearchField) & " Start: "

Message = Message & cStr(StartPos) & " End: " & CStr(EndPos)

Message = Message & Chr$(13) & Chr$(10)
SearchField = SearchField + 1

Loop

if Message = ™" Then

MsgBox "No fields of specified type found", 64

Else
'‘Copy to clipboard
clipboard.SetText(Message)
'Start notepad
shell ("Notepad.exe™)
'Paste into notepad (by sending Ctrl-v)
sendKeys " v", True

end if

End Sub

CrtQuery Example

This procedure copies screen data to the printer and clipboard

451

Sub Main

Dim intStart as Integer

Dim intEnd as Integer

Dim intRet as Integer

'‘Copy the screen contents to a diskfile

intStart = 0

intEnd = CInt(CrtQuery("HEIGHT")) * CInt(CrtQuery("WIDTH")) - 1
intRet = CrtCopy(intStart, intEnd, 0, "screen.txt")
'‘Copy the screen contents to the clipboard

intRet = CrtCopy(intStart, intEnd, 0, "C")

'‘Copy the screen contents to the printer

intRet = CrtCopy(intStart, intEnd, 0, "P")

'‘Copy a column of information to the clip board
intStart = CrtPosition(0, 0)

intEnd = CrtPosition(20, 8)

intRet = CrtCopy(intStart, intEnd, 1, "C")

End Sub

CrtRow Example

This procedure will wait for a TACL prompt then Emit the username and password.
Sub main

Dim pass as String

Dim LoginID as String

Dim NowTime as Long

Dim intRet as Integer

LoginID = "machine.user"

Pass = "NewPass"

'In case macro is the startup macro For the session, wait For TACL
‘prompt

NowTime = Timer

Do While CRTGet$(CRTRow(-1), CRTCol(-1) - 2, 1) <> ">"

452

‘Allow 10s For session to start
if Timer > NowTime + 10 then
msgBox "Did not detect TACL Prompt", 48
exit sub
end if
DoEvents
Loop
Emit "Logon " & LoginID
intRet = WaitStr(5,"Password:")
Emit Pass

End Sub

CrtSearch Example

This procedure will find the beginning of the "Password" entry field.

Sub main

Dim intRow as Integer

Dim intCol as Integer

Dim strText as String

Dim intPos as Integer

Dim RowNum as Integer

Dim ColNum as Integer

Dim Reply as String

' Find password field

intRow =0

intCol =0

strText = "PASSWORD:"

intPos = CrtSearch(intRow, intCol, strText, "N")

If intPos <> -1 Then
intPos = intPos + Len(strText) + 3 'Move to first field position
Colnum = CrtCol(intPos)

Rownum = CrtRow(intPos)

453

Reply = "Password field is located at position " & Str$(Rownum)
Reply = Reply & " Column " & Str$(Colnum)
MsgBox Reply
Else
MsgBox "Unable to locate the password field", 64
End If

End Sub

CrtSetCursor Example

This procedure will set the cursor to the second unprotected field.
Sub main

Dim intRow as Integer

Dim intCol as Integer

Dim intRet as Integer

Dim intPos as Integer

Dim FieldType as Integer

FieldType =1

' Find second unprotected field

intPos = CrtFieldSearch(1, 0, FieldType)
intRow = CrtRow(intPos)

intCol = CrtCol(intPos)

intRet = CrtSetCursor(intRow, intCol)

End Sub

CrtTrigger Example

This procedure will trigger a special key in the emulation

Sub Main

Dim strRslt as String

‘Secondary argument For "FuncKey" must be a match (case insensitive) to
'the function name as shown in the Mapped Keys dialog of the Key

'Mapper.

454

strRslt = CrtTrigger$("FUNCKEY™, "Page Up (Conv) / Function key (BIk)")
If strRslt = "OK" Then
MsgBox "Page Up request executed"
Else
MsgBox "Page Up key not supported by this emulation.", 64
End If

End Sub

CrtTypeSet Example

This procedure will report current emulation, then change to VT220.
Sub main
Dim strEmu as String
'‘Determine current emulation type
strEmu = "Current crt emulation is: " & CrtTypeSet$("")
MsgBox strEmu
'‘Change to VT 220
strEmu = CrtTypeSet$("DEC VT220")
If Len(strEmu) > 0 Then
MsgBox "New emulation is: " + strEmu
Else
MsgBox "Unable to locate the VT220 emulation DLL"
End If

End Sub

Emit Example

This procedure will wait for a TACL prompt, then Emit the username and password.
Sub main

Dim pass as String

Dim LoginID as String

Dim NowTime as Long

Dim intRet as Integer

LoginID = "machine.user"

455

Pass = "NewPass"
'In case macro is the startup macro For the session, wait For TACL
‘prompt
NowTime = Timer
Do While CRTGet$(CRTRow(-1), CRTCol(-1) - 2, 1) <> ">"
‘Allow 10s For session to start
if Timer > NowTime + 10 then
msgBox "Did not detect TACL Prompt", 48
exit sub
end if
DoEvents
Loop
Emit "Logon " & LoginID
intRet = WaitStr(5,"Password:")
Emit Pass

End Sub

FtQuery Example

This procedure will create an FTP session and log on.
Sub Main

Dim sResult as String

Dim HostName as String

Dim UserName as String

Dim Password as String

UserName = "myname"

HostName = "myhost"

Password = "mypass"

sResult = FtTypeSet$("FTP")

sResult = FtTrigger$("OPEN", HostName)o

Do

456

Waitsilent(1)
sResult = FtQuery$("STATUS", ")
Select Case uCase$(sResult)
Case "INPUTUSERID"
sResult = FtTrigger$("INPUT", UserName)
Case "INPUTPASSWORD"
sResult = FtTrigger$("INPUT", Password)
exit Do
Case "NOHOSTCIRCUIT"
sResult = FtTrigger$("BYE","")
exit sub
End Select
DoEvents
Loop
End Sub

FtSet Example

This procedure will send a file to the host using IXF
Sub Main

Dim strRet as String

strRet = FTTypeSet$("IXF")

strRet = FTSet$("BINARY", "OFF")

strRet = FTSet$("DELETETABS", "ON")

strRet = FTSet$("OVERWRITE", "ON")

strRet = FTSet$("HOSTNAME", "LINETEST")
strRet = FTTrigger$("SEND", "c:\temp\linetest.txt")
strRet = FTQuery$("STATUS")

Do While FTQuery$("STATUS") = "TRANSFERRING"
Loop

End Sub

457

CrtGet Example

This procedure will wait for a TACL prompt then Emit the username and password.
Sub main
Dim pass as String
Dim LoginID as String
Dim NowTime as Long
Dim intRet as Integer
LoginID = "machine.user"
Pass = "NewPass"
'In case macro is the startup macro For the session, wait For TACL
‘prompt
NowTime = Timer
Do While CRTGet$(CRTRow(-1), CRTCol(-1) - 2, 1) <> ">"
‘Allow 10s For session to start
if Timer > NowTime + 10 then
msgBox "Did not detect TACL Prompt", 48
exit sub
end if
DoEvents
Loop
Emit "Logon " & LoginID
intRet = WaitStr(5,"Password:")
Emit Pass

End Sub

CrtPosition Example

This procedure copies screen data to the printer and clipboard
Sub Main

Dim intStart as Integer

Dim intEnd as Integer

Dim intRet as Integer

458

'‘Copy the screen contents to a diskfile

intStart = 0

intEnd = CInt(CrtQuery("HEIGHT")) * CInt(CrtQuery("WIDTH")) - 1
intRet = CrtCopy(intStart, intEnd, 0, "screen.txt")
'Copy the screen contents to the clipboard

intRet = CrtCopy(intStart, intEnd, 0, "C")

'‘Copy the screen contents to the printer

intRet = CrtCopy(intStart, intEnd, 0, "P")

'‘Copy a column of information to the clip board
intStart = CrtPosition(0, 0)

intEnd = CrtPosition(20, 8)

intRet = CrtCopy(intStart, intEnd, 1, "C")

End Sub

FtTrigger Example

This procedure will create an FTP session and log on
Sub Main

Dim sResult as String

Dim HostName as String

Dim UserName as String

Dim Password as String

UserName = "myname"
HostName = "myhost"
Password = "mypass”
sResult = FtTypeSet$("FTP")
sResult = FtTrigger$("OPEN", HostName)
Do
Waitsilent(1)
sResult = FtQuery$("STATUS", ")

Select Case uCase$(sResult)

459

Case "INPUTUSERID"
sResult = FtTrigger$("INPUT", UserName)
Case "INPUTPASSWORD"
sResult = FtTrigger$("INPUT", Password)
exit Do
Case "NOHOSTCIRCUIT"
sResult = FtTrigger$("BYE","")
exit sub
End Select
DoEvents
Loop
End Sub

FtTypeSet Example

This procedure will create an FTP session and log on.
Sub Main

Dim sResult as String

Dim HostName as String

Dim UserName as String

Dim Password as String

UserName = "myname"
HostName = "myhost"
Password = "mypass"
sResult = FtTypeSet$("FTP")
sResult = FtTrigger$("OPEN", HostName)
Do
Waitsilent(1)
sResult = FtQuery$("STATUS", ")
Select Case uCase$(sResult)

Case "INPUTUSERID"

460

sResult = FtTrigger$("INPUT", UserName)
Case "INPUTPASSWORD"
SResult = FtTrigger$("INPUT", Password)
exit Do
Case "NOHOSTCIRCUIT"
sResult = FtTrigger$("BYE","")
exit sub
End Select
DoEvents
Loop
End Sub

lolnput Example

This function will return the entire response to a TACL command even if the response is more than

one screen. The screen data is returned as carriage-return/line-feed delimited lines.

function GetTacl(taclCmd as String)

Dim retStr as String, tmpStr as String

Dim charStr as String, charPos as Integer

"Take control of 1/0 stack

retStr = lolnput (1,0,0)

Emit taclCmd

' Collect response including the ">" prompt.

"NOTE: Processing will stop when ANY character in the Terminate$ parameter
"is detected.

" The maximum String length in VCB is 32767.

retStr = loInput$(15,32767,4, "'>"

" Release the 1/O stack

tmpStr = loInput$(0,0,0)

Emit ™"

461

'Since many functions Do not handle embedded nulls (e.g. message boxes),
'replace all nulls with spaces.
charStr = chr$(0)
charPos = instr(retStr, charStr)
Do while charPos <> 0
mid$(retStr, charPos) =" "
charPos = instr(charPos + 1, retStr, charStr)
Loop
" Replace all EOT's with spaces
charStr = chr$(4)
charPos = instr(retStr, charStr)
Do while charPos <> 0
mid$(retStr, charPos) =" "
charPos = instr(charPos + 1, retStr, charStr)
Loop
GetTacl = retStr

end function

loQuery Example

This procedure will set up a direct async connection. Note that a preferable method is to define the
session in a new file.

Sub Main

Dim strRet as String

strRet = loTypeSet$(*Asynchronous™)
strRet = l0Set$("COMPORT", "COM2")
strRet = loSet$("BAUD", "9600")

strRet = loSet$("CHARSIZE", "8")

strRet = l0Set$("STOPBITS", "1")

strRet = l10Set$("PARITY™, "N")

strRet = 10Set$("COMTARGET", "HOST")

strRet = l0Set$("FLOW", "RTS/CTS")

462

MsgBox loQuery$("*")
strRet = loTrigger$("CONNECT", ™)

End Sub

loSet Example

This procedure will set up a direct async connection. Note that a preferable method is to define the
session in a new parameter file.

Sub Main

Dim strRet as String

strRet = loTypeSet$(*Asynchronous™)
strRet = 10Set$("COMPORT", "COM2")
strRet = loSet$("BAUD", "9600")

strRet = loSet$("CHARSIZE", "8")
strRet = l0Set$("STOPBITS", "1")
strRet = 10Set$("PARITY", "N")

strRet = 10Set$("COMTARGET", "HOST")
strRet = loSet$("FLOW", "RTS/CTS")
MsgBox loQuery$(*"™*")

strRet = loTrigger$("CONNECT", ")
End Sub

loTrigger Example

This procedure will set up a direct async connection. Note that a preferable method is to define the
session in a new parameter file.

Sub Main

Dim strRet as String

strRet = loTypeSet$("Asynchronous")
strRet = 10Set$("COMPORT", "COM2")
strRet = loSet$("BAUD", "9600")
strRet = loSet$("CHARSIZE", "8")
strRet = l0Set$("STOPBITS", "1")
strRet = loSet$("PARITY", "N")

strRet = 10Set$("COMTARGET", "HOST")

463

strRet = loSet$("FLOW", "RTS/CTS")
MsgBox loQuery$("™*")

strRet = loTrigger$("CONNECT", ")
End Sub

loTypeSet Example

This procedure will set up a direct async connection. Note that a preferable method is to define the
session in a new parameter file.

Sub Main

Dim strRet as String

strRet = loTypeSet$("Asynchronous")
strRet = l0Set$("COMPORT", "COM2")
strRet = loSet$("BAUD", "9600")

strRet = loSet$("CHARSIZE", "8")
strRet = loSet$("STOPBITS", "1")
strRet = l0Set$("PARITY™, "N")

strRet = 10Set$("COMTARGET", "HOST")
strRet = loSet$("FLOW", "RTS/CTS")
MsgBox loQuery$("™*")

strRet = loTrigger$("CONNECT", ")

End Sub

WaitCrtCursor Example

This procedure will log a user onto the Tandem m6530 application.
Sub Main

dim strRet as string

dim intRet as integer

dim MyUserName as string

Dim MyPass as String

MyUserName = "MyName"

MyPass = "LetMeln"

‘Start mail application

464

Emit "m6530"

'Wait for cursor to arrive at "Correspondent Name" field
intRet = WaitCrtCursor(9, 25, 15)

'Send user name

Emit MyUserName

'Wait for cursor to arrive at password field

intRet = WaitCrtCursor(12, 25, 5)

Emit MyPass

intRet = WaitCrtCursor(23, 1, 5)

strRet = CrtTrigger$("FUNCKEY", "Tandem F16")
‘Wait for mail screen to open

intRet = WaitCrtUnlock(15)

End Sub

WaitCrtUnlock Example

This procedure will log a user onto the Tandem m6530 application.
Sub Main

dim strRet as string

dim intRet as integer

dim MyUserName as string

Dim MyPass as String

MyUserName = "MyName"

MyPass = "LetMeln"

‘Start mail application

Emit "m6530™

'Wait for cursor to arrive at "Correspondent Name" field
intRet = WaitCrtCursor(9, 25, 15)

‘Send user name

Emit MyUserName

"‘Wait for cursor to arrive at password field

intRet = WaitCrtCursor(12, 25, 5)

465

Emit MyPass

intRet = WaitCrtCursor(23, 1, 5)

strRet = CrtTrigger$("FUNCKEY", "Tandem F16")
‘Wait for mail screen to open

intRet = WaitCrtUnlock(15)

End Sub

WaitDCD Example

This example will dialup a host and log on.

Sub main

Dim strRet as String

Dim PhoneNumber as String

Dim intRet as Integer

" Dial up and login to a host while hiding the process from the user

strRet = CrtTrigger$("SCREEN","OFF")

PhoneNumber = "555-1234"

Emit "ATDT"; PhoneNumber

intRet = WaitDCD(45)

If intRet = 0 Then
strRet = CrtTrigger$("SCREEN", "ON")
MsgBox("Call attempt failed")
Exit Sub

End If

'Login to remote system

Emit ™"

If WaitStr(5, ">") = 0 then
strRet = CrtTrigger$("SCREEN", "ON")
MsgBox("Never Received TACL Prompt")
Exit Sub

Emit "logon SUPER"

intRet = WaitStr(5, "Password:")

466

Emit "OPENUP"

CrtCls

strRet = CrtTrigger$("SCREEN", "ON")
End Sub

WaitKeystrokes Example

This procedure will wait for the user to fill an 8 character field.
Sub main

Dim intRet as Integer

Dim strRet as String

intRet = WaitKeyStrokes(0, 8)

'Send F16 to the host

strRet = CrtTrigger$("FUNCKEY", "Tandem F16")

End Sub

WaitSilent Example

This procedure will create an FTP session and log on
Sub Main

Dim sResult as String

Dim HostName as String

Dim UserName as String

Dim Password as String

UserName = "myname"
HostName = "myhost"
Password = "mypass"
sResult = FtTypeSet$("FTP")
sResult = FtTrigger$("OPEN", HostName)
Do
Waitsilent(1)
sResult = FtQuery$("STATUS", ")

Select Case uCase$(sResult)

467

Case "INPUTUSERID"
sResult = FtTrigger$("INPUT", UserName)
Case "INPUTPASSWORD"
sResult = FtTrigger$("INPUT", Password)
exit Do
Case "NOHOSTCIRCUIT"
sResult = FtTrigger$("BYE","")
exit sub
End Select
DoEvents
Loop
End Sub

WaitStr Example

This procedure will wait for a TACL prompt, then Emit the username and password.

Sub main
Dim pass as String
Dim LoginID as String
Dim NowTime as Long
Dim intRet as Integer
LoginID = "machine.user"
Pass = "NewPass"
'In case macro is the startup macro For the session, wait For TACL
‘prompt
NowTime = Timer
Do While CRTGet$(CRTRow(-1), CRTCol(-1) - 2, 1) <> ">"
‘Allow 10s For session to start
if Timer > NowTime + 10 then
msgBox "Did not detect TACL Prompt", 48

exit sub

468

end if

DoEvents
Loop
Emit "Logon " & LoginID
intRet = WaitStr(5,"Password:")
Emit Pass

End Sub

WaitTime Example

This procedure will send keystrokes to OutsideView to reconnect a session (Alt+sr).
Sub main

AppClassActivate "OutsideView" 'No session may be maximized!

'Wait for application switch

waittime(20)

‘Send Alt+sr to reconnect session

SendKeys "%sr", TRUE

End Sub

' DDE Example

"This procedure will establish a DDE conversation with an Excel spreadsheet.

"It is assumed that Excel is running and that C:\temp\Ov_DDE .xIs exists but is not opened.
Sub Main

Dim intRet as Integer

Dim strRet as String

Dim DDEChan as Integer

Dim SprdSht as String

SprdSht = "c:\temp\ov_DDE.xIs"

On Error Resume Next

DDEChan = DDElInitiate("Excel", "System")
if Err <> 0 then

MsgBox "Could not establish DDE conversation with Excel", 48

469

exit sub
end if
DDEExecute DDEChan, "[OPEN("" & SprdSht & """, 0, FALSE)]"
DDETerminate DDEChan
DDEChan = DDElInitiate("Excel", SprdSht)
if Err <> 0 then
MsgBox "Could not establish DDE conversation with " & SprdSht, 48
exit sub
end if
strRet = DDERequest(DDEChan, "R1C1")
MsgBox "Cell R1C1 =" & strRet, 64, "R1C1 Contents"
DDEPoke DDEChan,"R2C1","Hello from Outside View"
DDETerminate(ChanNum)

End Sub

AppClassActivate Example

This example opens the Windows bitmap file SETUP.BMP in Paint.
Paint must already be open and not minimized before running this example.

Sub main
MsgBox "Opening C:\WINDOWS\SETUP.BMP in Paint."
AppClassActivate "MSPaintApp"
DoEvents
SendKeys "%FOC:\WINDOWS\SETUP.BMP{Enter}",1
MsgBox "File opened."”

End Sub

Me Example

An example use of Me would be in the script statement

UnloadForm me

CrtCol_Example

This procedure will wait for a TACL prompt, then Emit the username and password.

Sub main

470

Dim pass as String
Dim LoginID as String
Dim NowTime as Long
Dim intRet as Integer
LoginID = "machine.user"
Pass = "NewPass"
'In case macro is the startup macro For the session, wait For TACL
‘prompt
NowTime = Timer
Do While CRTGet$(CRTRow(-1), CRTCol(-1) - 2, 1) <> ">"
'Allow 10s For session to start
if Timer > NowTime + 10 then
msgBox "Did not detect TACL Prompt", 48
exit sub
end if
DoEvents
Loop
Emit "Logon " & LoginID
intRet = WaitStr(5,"Password:")
Emit Pass

End Sub

QuickSort Program Example

Const max% = 5000 ' Maximum length of data to be sorted.
Const ButtonPush =2 ' Used to determine why a

Const TextBoxEnter =3 ' dialog box function was called.
Const IdleLoop =5

Dim a(MAX) as Double

Dim count%, StarField%, Flag%, R%, Graphics%

' Display stars indicating recursion depth.

471

Sub Display
For i%=1 To 1000 : Next i ' Delay loop
DIgText StarField, String$(R,"*")

End Sub

' Sort the array of numbers. Note that VCBasic allows recursion.

Sub QuickSort(LeftSide%, RightSide%)
Dim v#, t as Double

Dim i as integer, j%

If Graphics Then
R =R+1: Call Display 'display recursion level
End If
If (RightSide>LeftSide) Then
v=a(RightSide) : i=LeftSide-1 : j=RightSide : a(0) = v
Do
Do :i=i+1: Loop Until a(i)>=v
Do :j=j-1: Loop Until a(j)<=v
t=a(i) : a(i)=a(j) : a(j)=t
Loop Until (j<=i)
a(j)=a(i) : a(i)= a(RightSide) : a(RightSide)=t
Call QuickSort(LeftSide,i-1)
Call QuickSort(i+1,RightSide)
End If
If Graphics Then
R =R-1: Call Display
End If

End Sub

472

' Dialog Box Function for star display dialog box.
' Every dialog box can have its own dialog box function.
Function DIgFunc%(Control$, action%, values&)

"a sneaky way to make a dialog box with no button:

' create a button but make it invisible.

If action = 1 Then DIgVisible DIgControlID("Stop"), 0

If action = IdleLoop Then

DlgFunc =1
If Flag = 0 Then
Flag=1

" get the ID of the field which will contain stars
StarField = DIgControlID("Stars")
Call QuickSort(1, count)
" when sorting is done, close the dialog box.
SendKeys "{enter}"
Exit Function
End If
End If

End Function

" Verify array size.
Function InputFunc%(Control$, action%, values&)
If (action = ButtonPush) And (Control = "OkBut") Then
If (Val(DIgText("Data")) <= 0) Or (Val(DIlgText("Data")) > 1000) Then
MsgBox "Invalid list size"
DlgFocus DIgControlID("Data™)

InputFunc =1

473

End If
End If

End Function

Sub Main

Begin Dialog StarBoxType 106, 20, "Recursion Level”, .DIgFunc
Text 5, 8, 101, 10, "Text", .Stars
PushButton 1, 3, 1, 1, "Stop", .Stop

End Dialog

Begin Dialog DataBoxType 20, 30, 186, 47, "Quicksort Parameters"”, .InputFunc
TextBox 83, 9, 25, 11, .Data
OKButton 130, 6, 50, 14, .OkBut
CancelButton 130, 23, 50, 14
Text 4, 10, 75, 10, "Size of list (0 - 1000)"
CheckBox 6, 25, 98, 8, "Animation", .Graphics

End Dialog

On Error Goto Done
Randomize
Dim DataBox as DataBoxType
DataBox.Data = 500" ' Default array size
Dialog DataBox
count = Val(DataBox.Data) ' Actual array size
t0 =timer
Fori=1 To count : a(i) = Rnd(0.5) : Next i ' make random data
Dim StarBox as StarBoxType
Graphics = DataBox.Graphics
If Graphics Then
Dialog StarBox

Else

474

Call QuickSort(1, count)
End If
tl = timer
Msgbox "elapsed time = "+str(t1-t0), ,"Quicksort Finished"
Done:
Exit Sub
Resume Next

End Sub

Bitmap Viewer Program Example

Declare Sub GetWindowsDirectory Lib "kernel" (ByVal buf$, ByVal buflen%)
Dim fname$, WinDir$

Const IdleLoop =5

'‘Dialog Box Function. Find and display next bitmap.
Function DIgFunc% (id$, action%, svalue&)
If action = IdleLoop And (svalue Mod 800 = 799) Then
fname = dir$
If fname ="" Then
SendKeys "{enter}"
Exit Function
End If
"load next picture
DlgSetPicture "p1", WinDir & fname, 0
DlgText DIgControlID("FileName"), fname
End If
If action = IdleLoop Then DIgFunc =1

End Function

Sub Main

475

Dim WinDirBuf as String * 150

'Find Windows bitmap files
Call GetWindowsDirectory (WinDirBuf, Len(WinDirBuf))
WinDir = Left(WinDirBuf, InStr(WinDirBuf, Chr$(0))-1) & "\"
fname = Dir$(WinDir & "*.bmp")

If (fname = ") Then Exit Sub

Begin Dialog PictureBoxType 25, 25, 210, 240, "Picture" , .DIgFunc
Picture 5, 5,200, 200, WinDir & fname, 0, .p1
Text 15, 225, 70, 15, fname, .FileName
PushButton 145, 220, 45, 15, "Stop"

End Dialog

Dim PictureBox as PictureBoxType

Dialog PictureBox

End Sub

Find Files Program Example

Option compare binary

Dim count " Number of files searched.

Const Dialoglnit =1 ' Used to determine why the

Const ButtonPush =2 ' dialog box function was called.
Const TextBoxEnter = 3

Const IdleLoop =5

" Function searchFiles finds the files and does the comparison.
" According to user defined flags, it will either use string

" comparison (the InStr function) or regular expressions

' comparison (the Like operator). The user also chooses

"whether the comparison will be case sensitive or insensitive.

476

Function searchFiles$(fileSpec$, subPattern$, caseSensitive%, regexp%)

Dim aLine$
retval =""
thisFile = dir$(fileSpec)
pattern = subPattern
While thisFile <> "
count = count+1
Open thisFile for input as #1
Do While Not Eof(1)
Line Input #1, aLine
If regexp Then
On Error Goto badRegexp
If Left$(pattern,1) <> "*" Then pattern = "*"+pattern+"*"
If Not caseSensitive Then ' convert to upper case
pattern = UCase(pattern)
aLine = UCase$(aLine)
End If
If aLine Like pattern Then
retVal = retVal + thisFile + chr$(13)
Exit Do
End If
Elself InStr(1, aLine, pattern, 1 - caseSensitive) Then
retVal = retVal + thisFile + chr$(13)
Exit Do
End If
Loop
Close #1
thisFile = dir$
Wend

searchFiles = retVal

477

Exit Function
badRegexp:

MsgBox "Error: Bad regular expression"
End Function

' Dialog Box Procedure
Function DIgProc%(Control$, action%, values&)
CR = Chr(13) : TabC = Chr(9)
HelpText = "Regular expression pattern matching rules:" & CR & CR & _
"?" & TabC & _
"match any single character" & CR & _
"* & TabC & _
"match any set of zero or more characters” & CR & _
"#' & TabC & _
"match any single digit character (0-9)" & CR & _
"[chars]" & TabC & _
"match any single character in chars" & CR & _
"['chars]" & TabC & _
"match any single character not in chars" & CR & CR & _
"Note: rules are per Visual Basic"
DlgProc =0
Select Case action
" disable find button until a search string is entered.
Case Dialoglnit : DIgEnable 7, 0
Case ButtonPush And (values=18)
" display help message
MsgBox HelpText, 0, "Help"
DlgProc =1

Case TextBoxEnter And (Contol="searchPattern")

478

" search string entered, enable find button.
DlgEnable 7, 1
Case IdleLoop
"whenever the searchpattern is empty, disable the find button
"whenever it becomes nonempty, enable the find button
patternID = DIgControlID("searchPattern™)
If DIgText(patternID) <> """ Then DIgEnable 7,1 Else DIgEnable 7,0
DlgProc = 1
End Select
End Function

" Prompt user for keyword and filespec.
Sub main
Begin dialog listboxd 30, 50, 165, 110, "Document Search", .DIgProc
text 10, 10, 60, 15, "&Files to Search:"
textbox 70, 7,75, 15, files
text 10, 27, 60, 15, "&Search Pattern:"
textoox 70, 24, 75, 15, .searchPattern
checkbox 25, 75, 85, 15, "Match Case", .xcase
checkbox 25, 90, 85, 15, "Use Pattern Matching", .regexp
buttongroup .but
button 25, 55, 60, 15, "Find"
button 110, 90, 40, 15, "Help"
cancelbutton 90, 55, 60, 15
End dialog
On Error Goto Cancelled
Dim SearchBox as listboxd
SearchBox.files = "*VCBasic"

SearchBox.xcase = 0

479

Dialog SearchBox
fileList = searchFiles(SearchBox.files, SearchBox.searchPattern,
SearchBox.xcase, SearchBox.regexp)

If fileList ="" Then
MsgBox "Pattern " & """ & SearchBox.searchPattern & """
& " not found in " & count & " file(s)"

Else
MsgBox fileList

End If

Cancelled:
Exit Sub
Resume

End Sub

Greatest Common Factor Program Example

Dim msg$ " Module-level variable, visible to all functions below
Const ButtonPush =2 ' Dialog box actions

Const TextBoxEnter = 3

" In this function, the greatest common factor is computed.
Function gcf% (u%, v%)

dim t%

If (u<v) Thent=u Else t=v

While ((umod t) <> 0) OR ((v mod t) <> 0)
t=t-1

Wend

gef=t

End Function

480

' CheckNumbers verifies both numbers are positive.

Function CheckNumbers% (Control$, action%, values&)

If action = TextBoxEnter Then
If Val(DIlgText$(Control)) < 1 Then
Retval =1
DlgText "errmsg", "Bad number, please reenter"
DlgFocus Control
End If
Elself action = ButtonPush and values = 16 Then
a = Val(DlgText$(""num1"))
b = Val(DIgText$("num2"))
Ifa<1Ora<>Int(a) Then
RetVval =1
MsgBox "Bad number, please reenter"
DlgFocus "num1"
Elself (b <1 Or b <> Int (b)) And RetVal =0 Then
Retval =1
MsgBox "Bad number, please reenter"
DlgFocus "num2"
Else " no error found, ok to print out answer

DlgText "errmsg", "The answer is " & gcf(a,b)

RetVval =1
End If
End If
CheckNumbers = RetVal "if RetVal = 0, dialog box will be exited

End Function

481

" Showdlg creates and displays the dialog box, prompting the

" user to input the two numbers.

Sub Showdlg

Begin dialog enter2num 60,60,150,50, " ** G C F **",.CheckNumbers
text 3, 4, 40,10, "first number"
textbox 60, 2, 25, 12, .numil$
text 3,18, 70,10, "second number"
textbox 60, 18, 25, 12, .num2$

text 5,35,130,10, msg$, .errmsg

OptionGroup .but

PushButton 100, 1, 40, 15, "OK", .0kBut
PushButton 100, 18, 40, 15, "Cancel", .cancelBut
End dialog

Dim InputDlg as enter2num
InputDlg.num1$="0"
InputDIlg.num2$="0"
Dialog InputDlg

End Sub

Sub Main
Call Showdlg

End Sub

Hello World Program Example

Demonstrates calls to subroutines and functions

482

' MessageBox and GetCurrentTime are calls to functions defined in

user.dll.

Declare Sub MessageBox LIB "user.dll" (BYVAL h%, BYVAL t$, BYVAL c$, BYVAL u%)

Declare Function GetCurrentTime& LIB "user.dll" ()

" Function CAT$ concatenates two strings with a space between them
Function Cat$(a$, b$)
Cat=a&""&Db

End Function

' Subprogram Say computes the time and display a message box.
Sub Say(what$)

Dim min, sec, hrs

sec = GetCurrentTime () /1000
min = sec / 60 : sec = sec mod 60

hrs = min / 60 : min = min mod 60

Dim eTime as variant ' DIM can now be anywhere
eTime = Format$(hrs,"00") & ":" & Format$(min,"00") & ":" & Format$(sec,"00")
MessageBox O, what, "Elapsed Time is " & eTime, 64

End Sub

Sub Main

Dim msg$

483

If (Command$ = "") Then msg$ = "world" Else msg$ = Command$

Say Cat("Hello", msg$)

End Sub

A cell is a particular character position on the screen or in the CRT image.

A metacommand is a command that gives the compiler instructions on how to build the program.

In VCBasic, metacommands are specified in comments that begin with a dollar sign ("$").

A script is a set of instructions, written in VCBasic, which execute for a specific control or form at

run time.

Control Flow and Assignment

Do...Loop

Exit

For...Next
GetCurValues
Goto

If ... Then ...
Else

Let

Lset
On...Goto

Rset

Select Case
Set

Stop

While ... Wend

Clipboard

Control repetitive actions.

Cause the current procedure or loop structure to
return.

Loop a fixed number of times.
Retrieve current values for a dialog box.
Send control to a line label.

Branch on a conditional value.

Assign a value to a variable.

Left-align one string or a user-defined variable
within another.

Branch to a one of several labels depending upon
value.

Right-align one string within another.
Execute one of a series of statement blocks.
Set an object variable to a value.

Stop program execution.

Control repetitive actions.

The Selection pointer allows you to select an object or form. Selected objects can be moved,
resized, grouped, etc., and have their properties and tasks defined.

484

Numeric Operators

Exponentiation
Unary minus and plus

Numeric multiplication or division. For division, the result is a Double.

Integer division. The operands can be Integer or Long.

Modulus or Remainder. The operands can be Integer or Long.

Numeric addition and subtraction. The + operator can also be used for string
concatenation.

String Operators

&

+

String concatenation

String concatenation

Comparison Operators (Numeric and String)

>

<>

Greater than

Less than

Equal to

Less than or equal to
Greater than or equal to

Not equal to

For numbers, the operands are widened to the least common type (Integer is preferred over Long,
which is preferred over Single, which is preferred over Double). For Strings, the comparison is
case-sensitive, and based on the collating sequence used by the language specified by the user using
the Windows Control Panel. The result is 0 for FALSE and -1 for TRUE.

Logical Operators

N
0
t

=0 [oNg= iy 4

© X

Unary operand can be Integer or Long. The operation is performed

Not bitwise (one's complement).

And operands can be Integer or Long. The operation is performed
bitwise.

Inclusi operands can be Integer or Long. The operation is performed

ve Or bitwise.

Exclus operands can be Integer or Long. The operation is performed

ive Or bitwise.

485

-

E Equiva operands can be Integer or Long. The operation is performed
q lence bitwise. (A Eqv B) is the same as (Not (A Xor B)).

v

| Implic operands can be Integer or Long. The operation is performed
m ation bitwise. (A Imp B) is the same as ((Not A) OR B).

p

call by reference

Arguments passed by reference to a procedure can be modified by the procedure. Procedures written
in Basic are defined to receive their arguments by reference. If you call such a procedure and pass it
a variable, and if the procedure modifies its corresponding formal parameter, it will modify the
variable. Passing an expression by reference is legal in Basic; if the called procedure modifies its
corresponding parameter, a temporary value will be modified, with no apparent effect on the caller.

control ID

This can be either a text string, in which case it is the name of the control, or it can be a numeric ID.
Note that control IDs are case-sensitive and do not include the dot that appears before the 1D.
Numeric IDs depend on the order in which dialog controls are defined. You can find the numeric ID
using the DIgControlID function.

dialog control

An item in a dialog box, such as a list box, combo box, or command button.

function

A procedure that returns a value. In VCBasic, the return value is specified by assigning a value to the
name of the function as if the function were a variable..

label

A label identifies a position in the program at which to continue execution, usually as a result of
executing a GoTo statement. To be recognized as a label, a name must begin in the first column, and
must be immediately followed by a colon (*:"). Reserved words are not valid labels.

metacommand
A metacommand is a command that gives the compiler instructions on how to build the program. In
VCBasic, metacommands are specified in comments that begin with a dollar sign ($).

name
A VCBasic name must start with a letter (A through Z). The remaining part of a name can also
contain numeric digits (0 through 9) or an underscore character (_). A name cannot be more than 40
characters in length. Type characters are not considered part of a name.

precedence order

The system VCBasic uses to determine which operators in an expression to evaluate first, second,
and so on. Operators with a higher precedence are evaluated before those with lower precedence.

486

Operators with equal precedence are evaluated from left to right. The default precedence order
(from high to low) is: numeric, string, comparison, logical.

subprogram

A procedure that does not return a value.

type character

A special character used as a suffix to a name of a function, variable, or constant. The character
defines the data type of the variable or function. The characters are:

Dynamic String $
Integer %
Long integer &
Single single !
precision
floating
point
Double double #
precision
floating
point
Currency exact @
fixed point
vartype
The internal tag used to identify the type of value currently assigned to a variant. One of the
following:
Empty 0
Null 1
Integer 2
Long 3
Single 4
Double 5
Currency 6
Date 7
String 8
Object 9

487

See Also
AppActivate
SendKeys
Shell

See Also
Input Function
Input Statement
IOInput Function
Include

Arrays

The available data types for arrays are: numbers, strings, variants, objects and records. Arrays of
arrays and dialog box records are not supported.

Array variables are declared by including a subscript list as part of the variableName. The syntax to
use for variableName is:

Dim variable([subscriptRange, ...]) As typeName or
Dim variable_with_suffix([subscriptRange, ...])

where subscriptRange is of the format:
[startSubscript To] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base statement can be used to
change the default.

Both the startSubscript and the endSubscript are valid subscripts for the array. The maximum
number of subscripts that can be specified in an array definition is 60. The maximum total size for an
array is only limited by the amount of memory available.

If no subscriptRange is specified for an array, the array is declared as a dynamic array. In this case,
the ReDim statement must be used to specify the dimensions of the array before the array can be
used.

Numbers

Numeric variables can be declared using the As clause and one of the following numeric types:
Currency, Integer, Long, Single, Double. Numeric variables can also be declared by including a
type character as a suffix to the name. Numeric variables are initialized to 0.

Objects

Obiject variables are declared using an As clause and a typeName of a class. Object variables can be
Set to refer to an object, and then used to access members and methods of the object using dot
notation.

488

Dim OLE2 As Object
Set OLE2 = CreateObject("'spoly.cpoly")
OLE2.reset

An object can be declared as New for some classes. In such instances, the object variable does not
need to be Set; a new object will be allocated when the variable is used. Note: The class Object does
not support the New operator.

Dim variableName As New className

variableName.methodName

Records

Record variables are declared by using an As clause and a typeName that has been defined
previously using the Type statement. The syntax to use is:

Dim variableName As typeName

Records are made up of a collection of data elements called fields. These fields can be of any
numeric, string, Variant, or previously-defined record type. See Type for details on accessing fields
within a record.

You can also use the Dim statement to declare a dialog box record. In this case, type is specified as
dialogName, where dialogName matches a dialog box name previously defined using Begin
Dialog. The dialog record variable can then be used in a Dialog statement.

Dialog box records have the same behavior as regular records; they differ only in the way they are
defined. Some applications might provide a number of predefined dialog boxes.

Strings

VCBasic supports two types of strings: fixed-length and dynamic. Fixed-length strings are declared
with a specific length (between 1 and 32767) and cannot be changed later. Use the following syntax
to declare a fixed-length string:

Dim variableName As String*length

Dynamic strings have no declared length, and can vary in length from 0 to 32,767. The initial length
for a dynamic string is 0. Use the following syntax to declare a dynamic string:

Dim variableName$ or
Dim variableName As String

When initialized, fixed-length strings are filled with zeros. Dynamic strings are initialized as
zero-length strings.

Variants

Declare variables as Variants when the type of the variable is not known at the start of, or might
change during, the procedure. For example, a Variant is useful for holding input from a user when
valid input can be either text or numbers. Use the following syntax to declare a Variant:

Dim variableName or
Dim variableName As Variant

Variant variables are initialized to vartype Empty.

489

Id$ is the same value for the dialog control that you use in the definition of that control. For
example, the id$ value for a text box is Textl if it is defined this way:

Textbox 271, 78, 33, 18, .Textl

The following table summarizes the possible action% values and their meanings:

action Meaning
%
1 Dialog box initialization. This value is passed before the dialog box

becomes visible.

2 Command button selected or dialog box control changed (except typing
in a text box or combo box).

3 Change in a text box or combo box. This value is passed when the
control loses the input focus: the user presses the TAB key or clicks
another control.

4 Change of control focus. 1d$ is the id of the dialog control gaining
focus. Suppvalue& contains the numeric id of the control losing focus.
A dialog function cannot display a message box or dialog box in
response to an action value 4.

5 An idle state. As soon as the dialog box is initialized (action% = 1), the
dialog function will be continuously called with action% = 5 if no other
action occurs. If dialog function wants to receive this message
continuously while the dialog box is idle, return a non-zero value. If 0
(zero) is returned, action% = 5 will be passed only while the user is
moving the mouse. For this action, 1d$ is equal to empty string (") and
suppvalue& is equal to the number of times action 5 was passed before.

If the user clicks a command button or changes a dialog box control, action% returns 2 or 3 and
suppvalue& identifies the control affected. The value returned depends on the type of control or
button the user changed or clicked. The following table summarizes the possible values for
suppvalue&:

Control suppvalue&

List box Number of the item selected, 0-based.

Check box 1 if selected, O if cleared, -1 if filled with gray.

Option Number of the option button in the option group, 0-based.

button

Text box Number of characters in the text box.

Combo The number of the item selected (0-based) for action 2, the number of
box characters in its text box for action 3.

OK button 1

Cancel 2

490

button

SHOWSTATUSDIALOG

If set to OFF, the IXF transfer status dialog will NOT display while transferring files; this allows for
"silent" transfers.

Also, if set to OFF, the STATUSPAUSE setting will be ignored, since STATUSPAUSE waits for
the user to click OK on the status dialog before terminating the transfer.

If set to ON, the IXF transfer status dialog will appear (default setting) and the STATUSPAUSE
setting will apply.

STATUSPAUSE

When the STATUSPAUSE setting is ON, the file transfer status dialog remains displayed after the
transfer is complete, allowing for review of the transfer information. The user must click OK.

If STATUSPAUSE is set to OFF, the file transfer status dialog disappears immediately after the
transfer is complete.

If SHOWSTATUSDIALOG is set to OFF, the setting of STATUSPAUSE is ignored, since users
will not be able to click on a dialog that is never shown.

491

Index

$
R O3S 14T 255, 258
e [T 10 L= TSR 193
R LT O] 1 o[- 255, 258

A
ADOUL VIWIMDI SNEIL ...ttt ettt sttt et sttt b 72
A o3OS 156
Yot V7 LSRR SRU 87
2o [0 SO ROTSTRTSRRTRR 43
AN [0] =T 0 o OSSR 94
N I N PSR 35
AN LTS 169, 170
A T 140 65, 66, 67, 68, 69, 116
BIVWAYS O 0P ..ttt bbbt b bbb bbbk E bbbt Rt bbb n e 70
2 1|5 OSSOSO 36, 37
N 0SSP PPSRPRTSUSPRON 159, 170
AAPPACTIVALE. ...ttt bbbt h et et bt bbb £ R £ R bR b e R SR E e Rt R £ e e bbbt b e bt bt e nre e 156
APPCIASSACEIVALE EXAMPIE ... bbb bbb 454
APPCIASSACEIVALE STATEMENT ...ttt b bt b ettt s et b e b sb e b sbesbeenes 261
APPHCALION DALA TYPE ...veviiieciieieei ettt sttt sttt et b e te e e e s e e et e be st e s beebe et e eseesteaesbestesbeeteeneeneenrens 35
APPHCALION DALA TYPES . .iviitietieieieiteste st st te st e e e et e e st e st e s tesaeete e e e s e se e besbesbeabesasesee s entesaesaestesreeteenseneeseens 35
AN (o1 010 1 1SS 251, 252
A o1 | - SR 251, 252
AN = o T= N oo P 72
AATTAYS ottt bbbt bbb et 172,181, 191, 198, 215, 221, 244, 249
oSS PSSP 157
o] = PSPPSR 157
T o PSPPSR 252
N [0 4]0 T=T o TSRS 199
N i OO 157
A 11 o (=SSOSR 433
E AT (01 7= S OS SRR 117

B
7 o1 (o] (o] OSSR 117
[T T Tod I oSSR 169
LT o PP R PP PR 157
1= To 1o I oo OO PRTSO PR S 158
BILMAP VIBWET . evieeecee ettt sttt e et et te e st e s e e e s e ee et e s be e Reeseeneenteseenbeneeaneaneeneeneeseens 458
Bitmap Viewer Program EXAMPIE.........cccviiviieieiie e sese et se et te st se e sraeaesaesaestestesressesneensesnens 458
[T (0T 1) Y/ [OSSR 118
0110 PR 66
L= L 1o) ST 59, 60, 61
=0 o SO RP RSO PPUT 159, 218
BULIONGIOUPD ...t b et e bRt bbb e s se e an bbb se e e 159
BULEONS 1.ttt sttt bttt sttt et e re s 159, 160, 211, 213, 214, 218
2 YAV Z | OSSR 159, 169

492

LOF | | R 159, 160, 170
(01| IS r=1 (<] 1 0 [=T 0| AR 160, 266
(O ot 119, 120
(O T ot =T 10 o IR 160, 161
(001613 To o RS 94
L0111 (o] o [T OO OO PSP PP TPOPRTPTORPRPOPN 120
CAPLION STALEIMENTeeecteee et bttt bbbttt b et ekt e bt et e ebe e et e abe e ebesbeneebe s 161
(=107 (o [T TSRO 71
(O 1T 225
{1 O | T 252
(OB] o [E TP 252
L0141 Lo OO TST TP TUU PR URRTR 87
(o] A= 1ot (=] £ TSR 77, 249, 250

INSErtiNG INtO OULPUL SEFING.....veiiiieieieie sttt st e e be et e e te et e e e sbesteaaeenee e et es 77
(O 0 1 USRI 161
(O 0| B T YT TR 162
(O Tt Q= 1) U 109
(O L Tot g = 10D Y= | £ 79
(O 0 ToTot g = 10D a1V [=1 1 (oo KO 79
CRECK BOX PIOPEITIESecvetieetiite ettt bbb bbbttt b bbbttt 79
(O g T=To] T2 o) TR 162
O 1 TSROSO TSR TR PP PR 253
(O 0] TSRO 253, 271
(O 1 = TSROSO TR TR TP 253
(04 111 ST OO RTR T T TR TPR TR 253
(O P Tl TTT 79, 163, 191, 208, 209, 227, 244, 254
(O 1T 1 SRR 94
ClEAN BIEAKPOINTS ...ttt bbb b bbbt bt e et s bt eb e bt bt e b e et e n b e b e eb e st e bt e b e e nn e b e 71
(O [T <R 87
(O 7o) 10 T o SRS 110, 163
CHPDO0AIT IMELNOUS ...ttt bbbt bbb bbbt s bbbt ans 80
(O T o] L0 T o IS 1] 1] L RSP 110, 272
(O I 1 o TPV PP PRSP 163
(O [0TSR 63, 164, 222
(O (o110 | RS RRTRRTORRR 72
(O] 1111110 ST TR 120
(00 LVATA 1o 11 TR 121
(1] 1o To TN =10) T TSR 110
COMDBO BOX EVENLS......tviieicetiie ettt e ettt b e e s s ettt e e sttt e e s s ab e e e e st be s e sbbeesssbbeeasssbbesesabaasessabanesssbbanesanes 80
COMDO BOX IMEBINOGS. ...ttt e b e s b e et e s sb e s s b e s s sbassabessbessabesssbessaben s 80
(@00 L o[0T S Y0)i o (0] =] [T PSSR 80
(00011100 =70) U 179, 237, 253, 254
(00121143 T [254
(0] 101 4P 13T KRR 254, 274
(070] 1 0110011 £ 193, 222, 255, 258
(070] 1111110 o [TOOPURRTRRONt 88
(7o) 1) PPN 254
ContinUING @ LONQG SEALBMENT.........coiiiieie ettt b e et e e e et e e e st e s besbesbesbesaeereeneeneees 74
(0001011 (0] I 71 =1 1 (= 43, 44
(00011 (0] F-3F 42,43
0L 164
(101 T=Tor= o | FE O 251, 252
(@0 1= T T | SRR PP 251, 252
01 = (=10 o] 1< o) S TSP TSP TSP P PPTPTPTPRTPTORPRPPOPIN 254

493

O o SO SO O RSRTRPRSTR 433
L0111 L S TRV U O U PR PR 136
CIEATIE EXAMPIE .ttt b bbbt e et e b e b e s bt b e e s e e n b e b shenbe bt eneeneneas 433
(O3 {0 £SO USRS 136
L0 (o] SRR 136
(07 (o] [=T 1o LSOOI 454
L0 8 (O40] o) TP U PR PR PR 136
(@83 (010] o)V = Ly o[- PSSR 433
O 1= 1T OO OSSP SOPRPTSPRRSPIN 136
(@8 | s o] PSS 434
(@83 1 T=] (0 K5T=T. oo PSS 136
CrEGBE EXAMPIE ..ottt bbb et b e bbbttt b e bbbt ekt ab e et e b et 441
CIEGELS ...ttt b ettt s e b b e bt A e b bt b et s e b bttt e et ettt et et ere s 136
(O3 {20171 T o USSR 136
CrtPOSITION EXAMPIE. ..ottt bbbt b b et b et sb e et abenn et 442
CrtPosition FUNCHION EXAMPIE.......oouiiiiiiiie e bbbttt bbb eneas 442
CrIQUENY EXAMPIE ...ttt b e bbbt bt s e e b e bt s be e b e e b e e bt en e e e et e sbesbesbesneaneas 435
(010 (01T TSSOV 136
CIEROW ...ttt bt h e bt s bRt e Rt e e E e Rt e Rt e R e e e Re e eR e e R e e R e e R r e eR b e nb e e e R e e Reenne e e nnes 136
CHIROW EXAMPIE ..ottt st e e be b e et e e st et e s tesbeeteeneesbe e et e stesbeareannaneas 436
LOF 4 ST (o OSSPSR 136
(O R TC T T T T 4]0 =SSP 437
(011 7= (T o] T TP P TP UR PRSPPI 136
(@84 R T= (T o] g =T o] S SPRSRRI 437
CrETIIGOEr EXAMPIE ... e b bbb bbbt b et bbb 438
O I T o T PSS 136
CrITYPESEE EXAMPIE ...t bbb bbbt b et et b et 438
(O Y LIS TP SR 136
LGRS 0o TP P VPP PP PUPP PV PRPRPRP 165
O] 1 ST OSSOSO OUTRTPRUTRRPRON 165
(080 1 T SO TP PP UUUPTUURTPRURUROON 258
CStrings Metacommand EXAMPIE ..o bbb 278
(G101 | ST TSP P TP U PO P TPTPTTPR 166, 278
CUIDIIS. ...ttt bR bbbt b bt R bt b et b et n e 166, 278
(O T T (= 0T3S 172,191, 254
CUITENTDIGLISIBOXAITAY ... ittt ettt b ettt b ettt b ettt b e et e e bttt sb ettt s bt et e sbe e ete e 188
O U] -] OSSP RSPRPTRPRSPIN 121
(OR3P TP PR SO R PPTP PP 121, 122
LAY - | OO 255
(ORI OSSPSR 256
D

(0 (OO TSR UTRTRTRTSRTRRN 166, 256

FOPMALEING ..ttt bbbt bt e e b e e b e be bt e b e e Rt e bt e b e b e st sbe et e et ene e e nnas 39
DALE FUNCLION ...ttt bt bbbt a e s et e e s bt e bt e b e e bt e b e e e e nb e sbeebesbeebeebeeneenneneen 166
DIALES ...ttt bbb bR bR £ R bRt R bt ek e bkt e b s 35, 166, 256
(D LT T | OO PRTSORS 166
DALEVAIUE.......ee ettt ettt ettt ettt R bRt n bt R ettt n b tenen 167, 256
DAY .ttt b £t b bR R R bR R bR E R bR R R R R bR bbbt b bbb 167, 256
[0] (o] 1T -G OO PRTOOPRTPSOUROOTN 88
DIDE ...ttt 167, 168, 256, 257
(D1 . T 1] o =SSOSR 453
DDEAPPREIUMCOUE FUNCLION. ...ttt 167, 282
(DI o U1 SR - 10=] 4T) S 167, 282
DDEINITIAE FUNCLION ...ttt sttt sttt e bt e s e e st e besbe st e sbe bt e reaneeneeseeneas 74

494

DDEREQUESE FUNCLION.......ctiiieiiieiiiiietieiesie sttt ettt e e e e stesbesbeaneere e e eneeseenneneesnens 168, 286

[CT o V7 (- ST 88
(=] o U o [OOSR 70,71
DEIUG IMBINU ...ttt bbbt bt b et e s e ee e eb e e b e b e e b e e Rt e R b et et e nbeebeebeeneeneennentas 54
=] o0 T I oo] OSSPSR 59
[T o0 oo T RSO RRSOPRPRSURSRIN 58
DIBCIATALIONS ... vttt bbbt b bt bbbt bbb £ b b e bbb bRt bbb bt n e ena 215
DIBCIATE ..o E e r et et 169
DETAUIL. ... 122,123
=] 4o L= RSOSSN 170
DIBIELE ...t R Rt n e 64, 94
(D] [= C=] (oo PO OO OSSP PR PO PRTPROURORPON 95
DEriVEd TTIG FUNCHIONS.ccuiitiiitisieete et bbbt b et b et b ettt b e 251
(D=2 T TSSOSO PRSPPSO PR PP PRTPRPOURPRPRPON 64
DT 1 [o]o OSSO 45, 46, 171

Dialog Boxes...45, 74, 157, 159, 160, 161, 162, 171, 172, 179, 180, 191, 192, 195, 201, 206, 207, 211, 213,
214, 215, 216, 218, 237, 241, 253

Dialog Functions and Statementsccccevereieiene e 45, 46,172, 173, 174, 175, 176, 177, 178
(o[E:Lo]o| D] o | TS 1= T0)cd N £ - | RSOSSN 219
5] SRS 171, 172, 191, 214, 215, 220
5| OO SPR SR 258
[]SS SOOI 257,291
(D] (=101 (] 1= SOOI 161, 162, 166, 206, 208, 223, 258
[0 LT3 (o] YOS 185, 225
[1] (T3 (o] PSSR 95
(] [o @] a1 1 o] 1 o I U 7ol £ o o S 45,172
(0] [o] =gt o[- 0T Tod £ o] o P 45, 173
[[o] g o] [T 7= (=] 0 1T o S 45,174
DIGENG STAIEMENT. ... vttt bttt b et bbbt bbbt b e bbb bt bt et nb et b b 174
DIGFOCUS FUNCLION ...ttt bttt et e bbbt e s e et et e neenbeneesbeneas 45,174
DIGFOCUS STAIEMENL.......eeiitiie ittt sttt e et s tesbe s be bt e s e et et e neenbeseesbenes 45, 175
DIGLIStBOXAITAY FUNCHION ...ttt sttt bbbttt sb e bbbt be e e bbbt 45,175
DIGLIStBOXAITAY STAIEMENTcuiiiieiieieieite sttt bttt e e bbbt bbbt e et e b sbesbe b b nes 45,175
[[0 RS T=] (ot 0 (SRS 176, 216
[[0 1=l 0T Tod o o SRS 45,176
[[0 e A =1 (=] 10 T=T o SRS 45,177
[[0 A 10 L= ot £ o o S 45, 177
[[0 A L0 T=T] =L (=T 03 =T o S 45, 177
[0 [0 AV AT o] L300 T o] S 45,178
(D [0 AV T | o] [1] 1] £ SRS SPR 45, 178
5 OSSPSR 169, 170
D0, WHIIE ..ottt ettt b et r b et a e r et renen 178, 183
DIOEVENES ...ttt bttt bt b e ekt e s bt h e e b e e Ee ek e e Re e Re e eRe e eRe e b e e b b e aE e e e b e e nEeenreeneenneenes 179
DOUDIE ...ttt b bbbt eenes 172, 191, 249, 254
] o S 95, 96
[T [OA0 o TP PR PP PP P PRTPRPRURPPTN 123
(D= [0 [(o] o JE ST TSP PO PRT PP POPRPRSOURPORPN 88
DIAGMOUE. ...ttt b et bbb e bt b e bt b e bt b e bbb bbbt 123
DIFAGOVET ...t e e bRt h e R et h e R er et 88
DIOPCOMDOBOX ...ttt ettt bbbt b et b bbb bbbt bbbt 179, 180
DIOPLISIBOX ...ttt bbbt b e b e b bt bbb bbbttt 180
E
o) RS SS ST 65, 66, 67, 68, 69
o 1N FTo a0 T=] 01 B V1T o PSSR S 55
0 [0 = 7o) RSO U TP USROS 110

495

Edit BIrING t0 FIONTcviiiiiiicec bbb et b e bbb bbb et sbe et e b nnenea 65

[0 LA Oo gL (o] Y] o TP 81
[0 [O0] gl 1 (o] INAY; (=1 (g To T USRS 81
Edit CONIOI PrOPEITIESeiteiee ettt bbbt s e e bbbt bt s et be st e bttt e e e neeseenas 81
0[O0 0)Y PRU SR 64
Lo |1 A O | O RRRTRTR 64
Lo [R D] (=1 (=TSRRI 64
Lo T T RO RRTRRR 64
Lo T Y, T3 L TR 55
L0 T s (TR 64
0 Y (S o 1Yot - 1 PSS 64
[0 LA =10 (o TP 64
Bt REPIACE ...t b et bbbtk b e ekt b e bt b et bbb e nea 64
[0 [Tl a1 R (O I =T Tod SRR 65
[1L L3 To (o TSRO SRR 64
EOIECNANGE ...ttt bbbk bk E bbb e bt bttt b e nn et nennene e 89
[YRR 193, 225
[=T I TSRS 193
01 TSR 136
LT e T] o] SRS 439
41 PR 136
1014V LT (] S0 i T SRS 96
g o] [124
o o 70, 187, 188, 193, 239
1V Z (o U 181
B IV 0N ettt e e e r e et e et e e r et e et e aen s 181, 317
[T] TR 181
=0 20O 37
[£ LT 181
= [T TR TP TR 182
= TR SRRTOTN 182
[Yo LT 10T] POt 182
L1 (0] SO 182, 183
LS 70 10 [49
Lo gl 1T | 113 RSP 49, 182, 183, 212, 222
(o] ST 183, 323
L (0] T PO TSRO UOPTUPRRPRRROt 49, 61
Y=Y 1 33,81

(0] 11T 01) 79

(o201 001 o To I o1) TR 80

L<To [L ool a1 (o] IR TR 81

1101110 PP ERR 81

L0 T(0 U 0N o0) PSSR 82

1o T=] I oT0] 0 (0 ISR 83

TS o1) GRS 83

OPTION DULLON. ...ttt bbbt bbbt s bbbt eb e s b et e b e et e benn e st ebenrenea 84

PICTUIE DIOX ..ttt bbb bbbt btk bbbtk b et b e bttt bt et b e 85

PUSH DUTEON L.ttt bbb bbbtk b etk bbbt et be et b e 86

LYot (0] | I oL L GO 86
Y=Y 01 I E) TSR 33
EXAMPIE bbb bR bRt Rt b bttt 433
EXAIMPIES ..ttt bbbttt bt bt E e b e b £ e R £ e R e R e bRt Rt Rt Rt R b e Rt bbbt b e e e e e b 62
S TR 64, 179, 183
D o 183
(010 I I oSSR 124
(=T o] 4TSRS 36

496

F

[A IS =l 00 151 ¥ o | RSOOSRt 127
L] (o [RTR 190, 229
T R 63, 64
LT LT[41U TR 56
FIlE RECENE FIIE LIS ..veiiveiitii ettt ettt s ettt e et e e s bt e e sbe e s sb e e s ebe e s sbaeesbesesbeesbeeesbbessbesessbeesneeens 64
[1=y AN £ GRS TRRR 184
BT OPY ettt bbb bbb bbbt bt 184
T L | (= T2 (U 184, 185

Files161, 162, 164, 166, 181, 184, 185, 187, 189, 190, 194, 197, 198, 201, 202, 206, 208, 213, 217, 219, 222,
224, 225, 228, 246, 247, 258

Find Files Program EXAMPIE ..ottt b 460
FINASTIING ... e b et b bt bbbt h et e b e ke s bt bt bt R e e e b e bbb e neene e e nas 96
FINASTINGEXACT. ...ttt h ettt bbbt bbb e b ekt bt e bt et e st et et e sbesbenbesbeeneas 96
OSSPSR 185
01111270 [0 OO SOOI 124
FONTITATIC ...ttt bt s bbbtk b ettt b et et n et b ne et 124
FONENGIMIE ...t et h b bbbt s e et b e bt e bt b e bt e bt e e e b e b bt b e neenr e 124
FONESIZE ..ttt e h bR R R bR R bR R bR bRt bbbt n et 124
FONESIITKETIIU ..ot bbbttt b ettt e r et 124
(o]0 (0T (=T 1T T SR 124, 125
o] G = q S SRRSO 183, 185
0T 1=To] [0 SRS 125
0] 10 TP R TP PP OPTOPRR 64, 111
FOIMI EVENTS ..ttt et bttt h e bt e bt oAbt eh bt eh b e e h e e nb e e ke e be e Re e ehe e ebe e bt enbeenbeneee e 81
FOIM IMEBTNOMAS ...ttt ettt bbbt e s e e e b e ke e bt eb e e Rt e s e e ne et e ebeebe st e aneaneennennas 82
FOIM PIOPEITIES ...ttt ettt sttt b et b et et b et e b s bt et s b et e besbe e ebe st eneabe st eneebeneenentns 82
FOIMIAL ..tttk b e b e bt ekt e Rt et e Re e e Rt e e b e e Rt e bt e Rt R e b e e R e e beennennnenneas 186, 187
FOIMAL SECTIONING ...ttt et bbbttt bbb e bt bt ekt e bt e bt e e et e bt sbe st e e bt e b e e e e e s 78
FOIMIALLINES ...t ettt b et b bbbt b bt E e bt E e b et E e bt b e bt E e b et b e b e be b neereas 97
L0 11 T S 38,41, 187

INSEITING CRATACTETSvieitiitiee ettt bbbt bbbt b e bbb b et et b et 77
FOIMALEING Date/ TIIMES. ... viiiiteieeiiite ettt bbbttt b ettt bbbt b s e b et et e sbe et e sbe et 39
FOrMALEING NUMDEIS.cuiiiitiiiece bbb et b et ab e sttt b ettt eb et et eebe et e sbe et 38
Formatting Numbers in SCIentific NOTALIONcooviiiiiiiiee e 41
FOrMATTING NUMEEICS. ...t ettt sttt b e et e e st e s besbeebeese e e enee e ebeneeseeneas 38, 39

UET=] g 1] T 0T PSSR 75
FOMELTING STIINQS ...ttt ettt bttt e et e bt s bt ekt b e e bt et et e besb et e nbeebe et e e neeneennenbas 41
FOMMHEIGNT ...ttt bbbt a et e b e b e bt e bt e bt e Rt e s e e e et e b e ebenbesbeebeaneennenens 126
0T S I OSSP PR USSR 72
o] 000114 To 112 OO OSSR 126
FTEEIFTIR. ...ttt ettt ettt bbb R bt Ee bR bbbt b bR bt eee 187
FLQUENY EXAMPIE . .oveieieieiic ettt sttt ettt te b et e st et ese e st e s tesbeeteeseeseeseesbesbesreataeneeneeseens 440
FLQUEIYSE. .. et b etk bbbtk n bRt ek e b e Rt ek b e Rt ek b e bt e bt e Rt bbb bt et b et 136
o = A b 1] - SRS 441
ST TSSO P RSP STE PRSP TPRTRN 136
FETFIQORT EXAMPIE. ..ottt bbbt b et b ettt r et r et 443
T o TSP 136
FETYPESEE EXAMPIE ..ottt b et bbbt s b et b et bbbt et b e 444
FETYPESEED .ttt ettt b et bbbt R bbbt Rt R bbb bbbt 137
FUNCHION .ttt bbbttt b et nennenes 169, 183, 187, 188

Function List156, 157, 163, 164, 165, 166, 167, 171, 172, 173, 174, 175, 176, 177, 178, 181, 182, 183, 184,
185, 186, 187, 188, 190, 192, 194, 195, 196, 197, 198, 199, 202, 203, 204, 205, 206, 209, 210, 215, 216,
217, 219, 220, 222, 223, 224, 229, 230, 231, 232, 233, 234, 235, 236, 237, 238, 240, 241, 242, 243, 244,
245, 246, 248, 252, 253, 254, 255, 256, 257, 258, 259

497

G
= OSSO PRTPTSRPRSPIN 189
LC 1= 7 11 ST T TSP T PR PR PSPPI 190
GEECUI VAIUES ...ttt bbbt bbbttt b et s bt s bbbt b et nn 78
GEECUIVAIUBS ...ttt bbbt bbb s bt bR bt s bt n bt e st b et s b et ann 78
LC TS { D | - TSSO 97
[© 1= 11 o PSSRSO 190, 333
GEEFIEIAS ..o ettt a bbb st bttt et e ne et e e 190, 333
(€121 1 0] 400 L O U TSR UR PP 97
LC1= | I aT=T o] 4O o ST 98
GELLINE T XL .ttt b bbbt bbbt bt b bRt e h e bRt b e SRt eh £ e R e e R e et e e bR b b e bt e b e e n et e 98
(€12 (0] o] [=Iot AT OO OO PR TP 79,191
GEtODJECE EXAMPIE ...ttt b e bbbt e et bbb e 79,334
LCT=] ST OSSPSR 99
LCT= ST (o H o A SERSTTTSPR 99
LGS I S OO TP T TP T PR URURUPRTRT 100
CHIPDOAIT ...t bbb e b e et b e bbbttt et 100
COMDO DOX BN HISE DOX....veverieiisieicie bbbttt bbb 100
[0 T=L T a0 T3 L (=T PSS 13
(€] [o] o= LSS 172, 191, 220, 254
€101 {0011 USSR 89
LC T I o TSR RTRPR 191
Greatest Common Factor Program EXAMPIE.........c.oiiiiiiiiiiiieieeee et 464
(€] o ISt 11 o LSOO UV 69
(€T (010 o1 =T) T RO U O UU PRSP 112
GIOUP BOX EVENLS ...ttt ettt bbbt et he e bt e b e e bt enb e e s e nsnenreenneas 82
GrOUP BOX IMIBLNOUS ...ttt bbbt s bbb bbbt b et enen 82
GrOUP BOX PIOPEITIES ...ttt sttt b b bttt e bbbt bt bt e bt e b et nb e eb e bt be e b e e e e b e 82
L (0T 0] =0) GRS 192
H
[F O o] o] [OOSR 126
[=TT oL OO OO TOPRTTORTPR 126
Hello World Program EXAMPIEcvceiiieie sttt sa s saesae e snesraeneenaeseens 466
o 11 o TSRS 72
HEID IMIBINU .. b b bbb bbbt b e b ekt eb et ekt e bt et e eb et et e ebene et e anennenea 57
HEIPFTIENGITIE ... bbb bbb bbb bbbt b et et bt et b et 126
HEIPID bbbt bbbtk bR bbb bbb bttt e 126
1< PP PO UR PR 192
HEXS .ttt bt Lo bRttt R e b et AR e bRt et ettt et et e Rt Re et st b et s e nentenen 192, 337
[[0 (e T=] T {To] o ISP RTRRPRRSRRN 126
HOFIZONTAI SPACE ...ttt bbbt bt e s et be bbb et e e et 67
(00 O TP P U OR PR PR PRI 192
POW 1O WITEE IMACIOS ...ttt bbbkt e e bbb b e et e s et e b e bt bt et e e st e st e nne b 13
HWVNG <ttt et b et s et e bt e ket e Rt e bt e R e e bt Ee b et Ee bR bbbt e 126
|
(oo DT TP U TP PP OUPTOPPTUPTURTURO 126
VI P ettt R R R Rt R Rt R R R AR e bR Re b e R e R bRt R bRt Rt n et b e 37
INCIUGE ...ttt ettt b e e b bt e s ekt s bbbt b et n bt n bt n bttt 194
Include MetacommMand EXAMPIEooveiiiiiiiiieise ettt besne e ens 339
INCIUAEA IMTACTOS ...tttk b e s ket ek e n et b n et e st et b e e 61
1T OSSOSO 72

498

INPUL e s 157, 194, 195, 201, 206, 207, 215

INPUE FUNCHION <.t b bbb bbbttt b bbb eb bt 194
INPUE SEALEIMENT. ...ttt h e bt e b et e st e e b b e eb e e e ke e ke e s ke eh e e e e e eanesbeeebeenbeanreans 194
1] o0 SO 194, 340, 341
L 0T o T {1 o1 o] o TSSO 194
0] 01U = OO P TP PO TRTOUPTOPPTUPPTPRTRO 194
INPUEBOX ...ttt bbbt e bt e R e e e R et eb e bt oAb e e R b e eh e e b e e Re e nEe e eRe e e e Re e eRe e Rt e nneenrean 195
INPUEBOXS ...ttt st sttt ettt sttt et 194, 195, 340, 341, 342
[T o O TSP T SR T TPV URUROPPPPTPRPRTON 77,100, 193, 194
Inserting Characters into the OULPUL SEFINGc.veviieiiiiie e 77
L=] (1o SO 100, 101
0] SRS 195
LIS = SR SPSPPSR 196
) RO S P USPRRR 258
1] T 1] OSSPSR 172, 191, 249, 254
oo 11 Tox £ o] S SSRRP 13
TOINPUE EXAMPIE ... bbbttt b bbbt bt bt e st et e b bt be s beeneenennas 445
10 L4010 USSR 138
TOQUETY EXAMPIE ...t bbbttt b e bt s bt bt bt e b e e h e et e s b ebeebeebeeneeneneas 446
TOQUETYSB. ...ttt ettt ettt ettt sttt e et et et e st e b e s e et e R e s e bR et e R R e st e st e bR et e Rt et n et n et e nene s 139
Lo T Ly 4T o] [P 446
FOSEES ...ttt bt R et R et R R et R R et e bRt e R ettt ettt rene s 140
Lol I T o= g =TT o] [S 447
Lol I To o PP USRS PRSP 141
ORI ST L] A T 1] o =SSP 447
FO I3 1S OSSPSR 142
o USRS 196
SRS 197
ISDIALE ...ttt bttt R e R R e be oAbt R et R e e b £ e b e e bt e R be e EeebeeReeebeeaheenbeenbean 260
ISEIMIEY .ot 260
ISIVIISSING .ttt bbb bbb bbb bR bR R bR R e b et b et 197
ISIMIISSING FUNCLION ...ttt bbbttt bbbt bt bt nee e b e 197, 348
]I OSSR ST PSR PRRR 260
LI T=] o oSSR RS PRR 261
K
L)Y/ (011 o USSR 89
[NGC) Y L= T OSSP TRPPPPTRN 90
5} S 90
[T OO PRTSOPR TS 197
L
1= OO SSPPRSPRIN 112,113
LADEI CONLIOI EVENES......iiiiiiieiieiicie ettt sttt sttt b et bbbttt et s b ettt e et b eee 83
Label CONLrOl IMIEENOUS.c.eiveieie ettt bttt bbb 83
LaADEI CONLIOI PrOPEILIES. ... cviiieiieieiieieie sttt sttt sttt sttt b et sttt b et et st et et b e e 83
LDEIS ..t bbbt bt b et h et b e b et be e ebenae e 191, 211
LANQUAGE RETEIENCEviviiiiiece ettt st be e te e s e et e e s aesbenbeeaeareeneeneeseentenre e 20, 62
T 01104 - T RS 126
001U o S 198
O T TP PST PRSP 198, 245, 353, 423
L aSESE. ettt ettt ettt et e ettt e et e et et e e e e a e r e e et eer e et et e et e et e e nrenaens 198, 245, 353, 423
Y SRS 65, 126, 198, 222, 353, 388
Y SO PSSRSO 198, 222, 353, 388
1Y 3 OSSP SORS 199

499

=1 0 = RSO PRRRO 199
I TR 199, 200
o TP 169
] 200
(IR Te @0 a1 TV 1 o] PP 74
LNE INPUL H oottt ettt b ke b bbbt s bt e b bR b e 201
LiNe INPUE STALEMENT ...ttt bbbttt b et et bbb bt et e e e 201
(T T= 1T o PSS 201
) OSSR 204
I 0 =0 PO U SRRSO 113
[T 20D S =T o1 £ 83
[T 270D Y[1 a0 o [T 84
LSE BOX PTOPEITIES ...tttk b bbb bbb bbbttt bbbt r e 84
[T {0) RSSO URS 180, 201
0= To P 90, 101
0T T (01U <o S SO PP RPN 101
(0L To | T (0 (T OO PRPOPRTOT 102
0 Lo O PSPPI 202
0T USROS 202
o) OSSR 202
oo PSSP ROPP PRI 203
I oo ST 172, 191, 249, 254
[0 To] o 1o S 178, 185, 247
01y 1 (oL USSP 90
-] OO PRRRROPPP 203
I TR 204, 224, 361, 391
LTHIMS oottt et b e et e e s e e b e s b aesbe e s te et e e ressbesebe e beenteerteereeeraen 204, 224, 361, 391
M

Macros iNCluded With OUESIAEVIBWeiiiieiree ettt et stee et sta e et e st aesbe s s beeabeeesbaeesneee e 61
VP L B 0T ot (o] TSR 251
Y TP 126, 127
IMIAXBIULTON ...ttt ettt e e e ettt e e e eate e e e et e e e e etaeeeeabeeeessbaeeeaateeeesnaseeesasbeeeeanseeeesnnenas 127
IVIBXLENGEN ..o b bbb bbb bbbt b et e 128
Y 1= 01U TP 53
MELACOMMANGSeecvieitee ettt e ere e st e e et e e st b e e ebre e s beeeebeeesbaeebeeesbeeebeeesbeesnbeesbeesnreeins 193, 255, 258
V=11 [0 o K TSSOSO P TOPRPRURRRPRONt 33

(010 T=Tol Q1) OSSR P RSP RRP 79

(oo 0l o TN o0) OSSPSR 80

LT L1 elo)£ (o] F TSROSO 81

0] 1 1 1 1 82

GIOUP D0X .ttt b et b bbb e bt b e ekt h e ekt b e ek b ekt bttt b e et b e b b nrere s 82

Yo =] B oT0] o (o) ISR 83

TS 001) RSO 84

OPTION DULLON. ...ttt bbbt bbb ekt e bbb e bt s b et b e e bt ebenb s e ebenneneas 85

PICTUIE DIOX ..ttt bt b bbb bbbt b e bbbtk b et e bt bttt bbb 85

S LU LS g o111 o] ISP P 86

1o 0] | o | OO RSTO PSR OTRROP 87
IMIBENOOS LLIST....eeivieecteecctie ettt ettt ettt e e e et e bt e e b e e st e e ebe e e sbeeebee e sbeeabeessbaeabeeesbeeeabeeestbeesaeeessbeesareeses 33
T OSSR 205
Y o I] =L (=T 0011 L AP UR R UST 205
IVIEAB. ...ttt ettt ettt s e b e et b e et e e ab e e h b e e b e e b e e be e be e A b e ehaeeae e abe e ebe e be et e ebeeebeeabeeabeeabearreeraearees 205
MIEAB STALEMENT.cctieiteccte ettt ettt et e et e et e et e s ta e s beesbe e s beeatesabesbeeebeebeeabeeabeetbebeenbeenbesnbestaesrens 205
VI ottt ettt e et e e b e he e e he e be b e h e e eb e abe e be e be A be et beeheeahe e beebeaReeeheeeheeebeeabeebeenbeetbearaearees 128
VLT =0 (o] o S 128, 129

500

IVIKDIIE ottt ettt ettt s e s be e sbe e abeeaeeeteesbe e be e be e s be e s besheeeheesbeeabeenbeenbeeheeebeenbeeabeenteateenraeares 206
1YL TSSOSO 36
1, oo SR 64
10T) 1o PSSO 206
Lo TU T =To o 1Y OSSPSR 91
IVIOUSEIMIOVE ...tttk btttk b e bt e bt e st e s e e b e A b e ek e e E e e et eRe e e R e e ebe e b e e m bt e R b e nb e e nb e e nbeenbeenneanneenes 91
IMIOUSEU . ettt ettt bbbtttk b e bt e b e Rt eh e e b e A b e A b e oA E e 4 Re e 4R e e eR e e ebe e R e e m b e eh b e nb b e nb e e nbeenreenneanneenes 92
VIOV .ttt ettt b bbbt h et h R R SRR e e oA R R R R e e R e e R e R bR Rt bRt b e nre s 102
0] =0 S 207
IVIUIETLLINI vttt b ettt b ettt b ettt e b et e sb et et e nb et et e s b e et e e et e abe e ebenbe e 129, 130
IVIUBEISEIECT ...ttt ettt e et e et e et e e be e be e sbesaeesbeesbeesbeeebeenbeenbeearesteestaesbes 130
N
N SO USTURRO 130, 131, 208
INBVY .ttt bbbt bbb R R R R R R R bR b bRt R bbbt 63, 172, 208, 209
12T @ 01T - () S 208, 367
LI [= T T TSSOSO TP PR UPOPPPPPTPTPRPRPN 185, 186
NOCSTIINGS ..ttt ettt b e et b e e bbbt e btk e b et b e b e bt ekt b e bt eb e b bt et b et et b et 258
NOCStrings Metacommand EXAMPIEc..ciiiiiiiieie e e 367
L SRR 37
[N o] 12 T [T T ST TSPV PP PPT PP 209
L PSPPSR 259
NPV et ettt b e et b et Ee bR LR Lt Ee b e Rt Eeeb e R g Re b et Re b e Rt Re b et Ee et et et a et et et ene 209
N OO PRTSOR S 210
NUMDETS ... 156, 157, 163, 165, 185, 187, 220, 223, 229, 242, 252, 253, 255, 256, 258
FOPMALEING ...t bbbt bt nb e bbbt bt bt e b e e b e b et eb et e bt e neennenas 38
SCIENLITIC NOALION TOIMAL........ciiiicice bbbttt b e et neereas 41
NUMEIIC FUNCHIONS ...ttt ettt es et naenes 183, 203, 236
@)
(@]] 1= o1 OSSR 79, 163, 172, 191, 204, 208, 209, 210, 227, 228, 244, 254, 255
(@] 0T B O TSRS 210
@ X OSSOSO 210, 371
(@ ol 3OS 210, 371
ODBC ..ttt ettt 231, 232, 233, 234, 235, 236
OKBULEON ©..tt vttt sttt b ettt b e bbbt b e bt e bt e b e e bt eb et e bt eb et ekt e be e et e ebe st et e ebe e ebeabeneare s 211
L PSS 79, 191, 210, 254, 255
L T =) PSPPSR 212
L3 T o o T USRS 211
(@] 11 o OSSR 63, 212, 213
L@ 0T 0] £ TP TP PPV T TP PRUR PR 36
(@] 0] T] F ST SORS R PP 213,214
OPLION BASE ...ttt bbbttt b e bbb h £ oAb et R e bt R b £ e R e E e e e bbbt b e Rt e e e nennas 214
(@] o To] o1 =101 1 o]0 F SO RURURRTT 114
OPLION BUITON EVENTS ...ttt bbbttt b e bbbt b e b e e e et e e e eb e st e bt er e e e et e 84
OPtion BULTON MELNOGSceiviieiicieece ettt ettt et et e s te e aaese et et e seesbesteeneerae e eneees 85
(@ o Lo g =TV (g I o] oL (=TSRSS 85
(@] 01010 A0 1 1] o T - PSS 215
(@] 01T T 4o o]) PSS 215
(@] 0T a1 (01U o SO 213,214
L 11 218
o]
Y] (0] 270) OO V SO PR 215

501

T o] (0| 20D G 215, 379

T Y0 (0 [T T SO OO USSR 131
L0 (0 =SSR 114, 115, 131, 133, 176, 216
PICTUIE BOX EVENES ...ttt ettt ettt ettt st ste e st e e s te et e eaeeaasesae e beesbeesbesseesreesneeaaeeareenbeenreans 85
PICTUIE BOX IMBINOUS ...ttt et ettt et e e be et e e sbessaesteesbeesbeesbesaeesaeeabeenbeenraens 85
PICLUIE BOX PrOPEITIESevvitiitetietiitetete sttt sttt sttt st e s besb e s ebe st e s e ebe st e e et e e ebesbeneeseaneneerens 85
e Tol (0] (=101 (o] o OO RTSOORS 133
PHCTUTBIUSTITY ...ttt b bbbttt b e b e bbbt bt ek e b e ebesbesbe et e e neeneenen 133
1 ST TP P PP P PP TP VRTPRPRUPOPPPN 216
PPIMIE ettt h et bR e bt E e Rt Ee bt Re bt Ee bR bbbt b bbb e 217
T gL 1Y O] (o SRS 74
o T SRS 64, 217, 218, 231, 240
(0 TorcTo Tt 160, 170, 188
Program EXAMPIE ..ottt b e et b bbbt bbbt 455
BIEMAD VIBWET ...ttt bbbt bbbt bbbttt bbb bt 458
FING FIIES ...ttt e a e e e be e s be et e e st e ebtesbe e beesbeesbesbaesbeesbeeeeenneeneeanes 460
GreateSt COMMON FACTO.........otiiiieii ettt ettt ettt b e b e e sb e e be bt sn e aeeeaeesbe et e esbeseee e 464
HEHO WOTI ...t bbbttt b e bbbt et e et e s b et et et sbesbesneeneas 466
(O3 o3 &0] PO SRS 455
PrOGIam EXAMPIES......cvciiiiiiieiieiti ettt sttt et et st b et e e te e st e e et e besbesbesbeeseeseentebesbesteaneeneeneenrs 62
S]] 1T 1TSS 34, 46, 47, 48, 167, 256
Properties
CRECK D0X ..ttt et b bbbt bbb bbb et b e bttt b et b e b et 79
COMIIO DOX .ttt bbbkt s bbbkt b stk b e e et b etk b et b b nrere s 80
LT [o] 111 (o OSSPSR 81
L 0] 111 1P PO OSSP PRR PRSPPSO 82
o1 (0 18] 1o Lo) OSSPSR PP RSO PRPORPRORPN 82
JADEI CONEIOL ...ttt s b e et e e be et e eabestaesbeesbeesbesseesanesbsesbeebeenbeans 83
TS o0 SRRSO PRUPR 84
OPTION DULLON. ...ttt bbbt b bbbt b bt e bt s b e bt eb e nb et b e e et e benn b e anennenean 85
PICTUIE DIOX ...ttt b et bbb bbbt b e btk s h etk bt bt b e bbbttt b et et n et 85
PUSH DULEON ... bbbt bttt b bbbt bt b et e s b e e b e bt bt et e e ntene e e b e 86
1ol (0] I o7 1 OO TP TUTO U UO POV URTORPRUPTPIN 87
0T 0T YRS =T SRS 46, 47
PUSH BULTON ...t b et b et b et et b ettt s b et et s b et et b ens 115
PUSH BUITON EVENTS ...ttt ettt ettt sttt sttt bbb esbe et e st e ereebeneerea 86
PUSH BULEON IMIEBENOAS ...ttt ettt et et e et e e te s ta e s teesbeesbeebesasesbeeebeebeenbeens 86
U I S0 Lo g o 0] =T TSRS 86
PUSRBULLON ...ttt bbbkttt b et b et b ettt nnenes 159, 218
SO SSORS 218
Q
QUICKSOrt Program EXaMPIE......co.oiiiiiiiiies ettt 455
R
10 (o]0 0T OO PRTSORSP 220
RALE. ... R R R R R R R R Rt E R e R e R bRt Rt R e enre e 220
RECOTUS. ...ttt be e 74,172, 191, 244, 249, 250
REDIM ..ttt bttt bbbt b bbbt nenaenes 172,191, 214, 220
RETTESI .ttt et et e st b e e be e be e e e ae e ehe e ebe e be et e eab e bt e ehteetaeabeesbeenreenneenreaaes 102
<] 1 IO OO PSP SOUP PPN 221,222
< 1 1101/ UPPP PSP 94,102, 103, 222
REPIACESEIBCTION ...t bttt bbbt b ettt 103
=] PSPPSR 222
RESIZE ...ttt h bR R R £ e R e bR e R b £ R e e R b e R bbb b et e e e tas 93

502

o 10 4 SRS 65, 222
RGNS .ttt aenes 198, 222, 353, 388
AT 211 = SO PP URTURORURRRRIN 223
RIGNECTICK EVENT ...ttt ettt ettt e e e bt b e bt e b e e meem e e et et e sbeebeebeaneeneenneeas 93
L4011 OO 223
4410 [T 223
T PSPPSRt 223
3 I L OO RPPROTOP 224, 391
RTINS ettt bt e et e et e st e e s be e be e besabesRe e e be e abeebeeabeeab e e bt e e bbeebe e beebeebeanees 224, 391
RUN ettt et e e e be e aA bt e be e e bt e e EeeaR b e e e reeah bt e e beeaAbeeaRre et beeaareeatbeeateeentreennreets 70
LU 0 AV =T U USSP PUPRTOPORP 57
RUNMACTO STALEIMENTeeeiitiee ettt e e et e e et e e e s e e e st b e e e ebaeeessabeeeseabaeeessreessabeeeeanteeeennes 142
S

ST V1T T T PSS 68
SAMIE SIZE .. uiiitei ettt et e b e e be e be et e bbbt ebe e be e be et b et b e heeabe e beebeeheeaheeabeeabe e be e beeabeetbenteearees 69
SAME WIAN 1ttt ettt e s b e e s be e be e be s ab e ehe e ebe e ebe e beebeebeebeenbeerbeerbeetaenres 69
SAIMPIE IMIACTOS ...ttt b et b et b bbbt b bbbt bbb bbb et b bbb enn 61
T VTR 63
SAVE AAS ettt — e e et e e et ——eeeeh——eeaatteeeai——teeaat——eeaattteeaaa——teeaatteeeaitbeeeaareeeeibereeaarreeeaanes 63
SAVE AS TOXL .uitiiiiiiiie ittt ettt et e e e ettt e e e et et e e s beee e e etbeeeeeatee e e sabaeeeebbeeeeabreeeeaabeeaeabbeeeaanteeeeabaeaeaatbeeeaanes 63
1o (< 01 0] Lol a0 - L o] o OSSR 38,41, 75

FOTMAEEING ..ttt b et bt bbb bbb s bbb st b et b bbb 41
ST 1018 o 1 o] SO O ST U PR RPRUPOTPRUTPRTRTI 72,73
K10l 0TSSP PR RO U TR 72,73
ol (o] | ISP OU SRR ST OPRROPN 93
S{ot (o] 1 7T GO TSSOSO 116
SCIOI BT EVENES....eiiuiiitiiite ittt ettt ettt et st st ebe e e be e be et eeabeebseebe e beebeesbestaesbeesbeebeebeeabeenbessbestbestaesrens 86
SCIOI Bl IMBINOUS........cuviitiictie ittt ettt et e b et e et st e sbe e sbe e be st e saeeebeeebeeabeenbessbesrbestaesres 87
SCIOI BaI PIOPEITIES.eeiiiitieeieite ettt b et b ettt b et b ettt sttt e st b et b et ens 87
SCIOIIBAIS ..ottt ettt ettt et e b et be et eeae e s beesbe e beesbesaeesheesbeeebeeabeeRbeebbeebe e beenbe et b e abeesbeenbeereeneeanes 133
o (0] LI 1= PSR 103
=10 L o | SRRSO RRRO ST 251
ST =Telo] oo PP 224
TeToto] g 0P L Y O o]0 11 £] USROS UR 74
Sectioning Numeric fmt SPeCIfiCatiONSoiiiiiiie e e 78
BB ittt e b et e eh b e b e e b e b e et e e eeaaeab e e e beabe et e ah b e abbeebaeabe e beereeares 224, 225
Y] T OSSP 225
SEIBCHION IMIOUE ...ttt ettt e e b e b e et e et e et b e st e e sbe e sbe e beeabesaeeebeeebeesbeenbesnbesbaestaesres 70
RS TC] [Tt 1] T OSSOSO 104
LT LTy a] R U [PSS 104
LT 10| VS 226, 227
L SRRSO OPRRR 209, 227, 228
=] 7 AN £ 1 OO 228
Y= (=T (=1 T [= U 105
1= D7 RO 105
YT [229, 399
Y LT o KSR 229, 399
SEEFOCUS ..ottt ettt e et e e e e e e ettt e e e e e e e e e baeeeaeabeeeee——eaeabaeeeatteeeeanreeeeataaaaan 106
SEIREAAONIY ... et bbbt b ettt s h e bt bt b e et bbbt e et nenas 106
1= =] TSP RRR PP 107
1= 1= [=Tod 1o OSSPSR PP 107
IS T=] B 1= USRI 107
S T0 [O OO PPRRPPO 229
] 211 | RSOOSR 230

503

] [PSPPSR PP 230
Y111 OSSR 172, 191, 249, 254
SIMAITCRANGE ..t e bbbt e et e eb e e bt s bt e bt e Rt e m e e besb et e nbeebenbeebeere e e entas 133
0] £ (=T o IR SR ORRR PP 133
SPIBCE .. etttk h e E bR E e R e R £ e R e e R e e R e R oA R e eRe e R e e Rt e Rt R e e b e e Ee e teenneanees 231, 401
SPACED ...ttt bbb bR SRR £ £ £ bbbk b R Rttt et ettt bbbt 231, 401
o T RO U OU PR PR 231
5 | RS 231, 232, 233, 234, 235, 236
S]] @ (o TY- I U3 Tod £ o o S 231, 402
Y@] I (o T 0 T (o S 232,403
SQLEXECQUENY FUNCLIONeviieieieieetee ettt sttt st e s s e e saessestesrestaeseeneenaeneenseneenrenns 232, 404
SQLGELSCNEMA FUNCLION ...ttt ettt be et e st e s be e s b e e be et e s rbesbeesbeesbeesresnees 233, 405
SQLOPEN FUNCLION. ...ttt sttt e st e s et e b sb e besbeebeebeeneeneeneenbeneeseeneas 234, 406
Y@] I LT U 1= A U] o o SRS 234, 406
SQLRELIEVE FUNCLION......c.iiiticiiccece et st be e be et s ae e ere e eae s 235, 236, 407, 408
SQLRetrieVETOFIle FUNCLIONccviiiiiic ettt 235, 236, 407, 408
IS | T T TP U PR UR PR 236
SEACK HOTIZONAL ..ottt et b e e b e e et e e s be e s abeesabeesabeesabeesabesenbeseabeeenreeas 68
SEACK VBITICAL ...ttt ettt et et e b e b e e ab e e tb e s beesbe e sbe e besabesaeeebeeabeeabeenbeeabestbestaesres 67
] - USRS 70

Statement List156, 157, 159, 160, 161, 162, 164, 169, 170, 172, 174, 175, 176, 177,178, 179, 180, 181, 182,
183, 184, 185, 187, 189, 191, 192, 193, 194, 197, 199, 201, 202, 203, 207, 208, 211, 212, 213, 214, 215,
216, 217, 218, 220, 221, 222, 223, 225, 226, 228, 236, 237, 239, 241, 242, 243, 245, 247, 248, 252, 253,
254, 255, 256, 258

] L o 236, 237
Y L (o] O] 40T = 1) U 237
) o PRSPPSO 71,185, 186
3] (0] o OSSR 61, 237
) 1 ST 237
)1 TR 237,412
1 (O] 1 o T RO U TP PR PR 238
] 1130 SO SO PR SOR 172, 191, 238, 239, 249, 254
3] (10 TSP 238, 413

strings ..157, 166, 187, 190, 192, 194, 195, 196, 198, 199, 204, 205, 210, 215, 222, 224, 229, 231, 237, 238,
241, 243, 245, 246, 253

FOIMMALLING .ttt b et h bt b b bRkt b e bbbttt 41
31 PSS 133
SUD e 160, 169, 183, 239
SUDPIOGIAIM ..ottt b bbb bbb bbb bbb bbb 239, 240
SYSIMBNUL ..t h et R R Rt r R 133

T

LI L OO T TSP ST PO U SO UOTPR PPN 240
BIE: 10110 > OO UR USSR 133
BIE: 101 (o] o PO US USSR 133
I TSRS RTUUPTUPPURURO 133
I TR T PP PP UR PPN 240
LI 011000] (0T | PO TERSPRRRT 147
L= ST OO PRSP TP PO PR PTPPR 133, 134, 241
TEOXEBOX ..ttt 241
LI L] PSPPSR PP 193
Tl R R Rt R et R 71
LISl OO SR P TR UOURTPR PO 134
L0 L PRSP PPPPPRRRROt 241, 242

FOTMMAELING ..ttt b b bbb b s bbb bt bbbt bt bbb 39

504

L] 0= GO SRR RRRT 93, 135, 242
THMESEIIAL ...ttt bt bbbt h et e b e e bt e b e e b e s be e b e e Rt e Rt e nbeebe e b e ebeebeeneeneenneneas 242
I TR LCAV L TSRO PSR 243
Q10 To] Lo U OSSPSR 53
LI oI PSSP 66, 135
LI o] oo L3N = (o] £SO 49
TrapPING EFTOT COUBSottt ettt bt bbbt b e b et sb e s b e s b e eb e et e e neene e b e nbe b nbe s 48, 182
I o T 0 T PSS 251
TrigoONOMELriC FUNCHIONScvveveiccie ettt 157, 164, 230, 240, 251
LI L0 243
B 1001 TSRO TR TR TR 243, 421
IR L o117 1o | USSR 127
B I (o4 - LSS 16
TULOTTAT STEP FOU ...ttt bbbttt bbb bbbt bbb 156
TULOTTAT STEP ONE ..ttt bbb bbbt b bbbt b bbb bt b n s 150
TULOTTAL STEP THIBE.... ettt b bbbt e e bbb e bt b e e st e b e nbesb e besbeebeenes 153
T o] g LIRS oI Yo RPN 151
1Y OSSR 171, 243, 244
Type ConVersioncccccevecererenenas 157, 163, 165, 186, 192, 210, 237, 246, 248, 252, 253, 255, 256, 258
13/ 1=T0 244
B I/ oToTo] = o] e (o o] 1 1Y/=T a1 4 To] 259
U
UBOUNG ..ttt sttt b ettt b e e £ e b et s bt e b e b e e b b et e b e b e s e e bt e st e b e b et et st et b b ne e 244
L0 [0 T PP RO PR PSP 245
LU] To [OO PRTSOOR S 108
LT oo OO OO ST PRPPSOPRPRSOURRON 94
L0 Tg] o=l | Ta] 14 PO OOV 108
UNTOCK ...ttt bbbttt b et b e btk e b etk e bRt e b b e st b e b e r et e bt et b et 245
L0 [(] TSRO TP 178
User-defined NUMEIIC FOIMALScooviiiiiecieerc ettt ettt sne e e eneeneenes 75
USTNG HEID .ttt b et b e bt bt bt e b e ekt bt ekt bt et e b nn bt enennene 72
Vv
AL OSSPSR 246
Variables. ... 35,37, 71,170, 171, 172, 191, 236, 237, 248, 249, 254
AV £ 1AL 3 ST 37, 38
VAFTANT DA TYPE vttt bbb b bbb b st bbb bbbt b bbbt et nb e 37
A U Y/ 0TSPTSRO 246, 247
A @12 T T o V(o] ¢ - | OSSR 16
WEITICAL SPACE. ...ttt bbb bbb bbbt bbbt bt bbb bt et n et 67
VB ettt ettt e et e ettt b e e ae e eb e e e be et e e a b e ea b e ke e ete e he e teeRteeheeeReeaheeabeebeenteeateaRbe et eeeteeateenteenreereenreanns 69
ATWAYS ON TOP ettt ettt ettt b et e e bbbt bt b e e st e s e e b e b e eb e eb e e be e bt e b e e me e st e ne e benbeeb e et e e neene e e bas 70
PIOPEITY SNEEL ...ttt bbbt bbb bt bt e bt bt bt et e st e b e benbeeb e s b e bt e b e e n et e 70
STt] o B =0 [(o TP U SO O TR URTUROURUPPN 70
SEALUS BT ..ttt b bt b e b E R bR R e R e R bR Rt bbb et nne 70
LI L0 Lo T OO OSSPSR 69
VIBW IMIBIU .t ettt b ettt b et b e btk e b et E e e b et b e e b et e b e b e Rt e b e b et e b e b et et s b et et st ne e 57
Visual CommBasiC FUNAAMENTAIS.........civiieieeieierieres s se e e te et e e eree e eseeseesaeseesresreeneeneeneens 13
W
R AT T ¢ (O8] £l LSS 144
WatCIrtCUISOr EXAMPIE ..ottt st e st e be et e e s e e e et e stesteeaeere e e eneees 448
WRITCTEUNIOCK ... bbbt bbbttt bbbt 144

505

WaILCITUNIOCK EXAMPIE ...ttt bbb bbb 449

LT U111 o OSSPSR 145
WD CD EXAMPI. ...ttt b e bbbt bt bt et e e et sb e besb e ebesb e ae e b e e e e e 449
WVAITKBYSTIIOKES ...ttt e bbbt bt et bt bt bt b e bt e Rt e st e nb e b e nbeeb e et e bt eb e e e e e e 145
WaitKeYStrOKES EXAIMPIE ...ttt bbbt e e bt st r e e e s 450
R AT UL ST 11T SO 145
WaILSTIENT EXAMPIE.....eviiit ettt bbbttt b e et b ne e 451
WVBIESEE ettt bbbt b bbbt bt bt e bt e b et e e E e b e ARt SR £ e b e e Rt e R e e b bR bRt bt e bt e e 146
R AT U T 4] o[- SR 452
R AT T T2 SOOI P 147
WaatTIME EXAMPIE.. ettt et e s be e be e s e ese e e e st e bestestesteeneere e e eneenes 452
WVBEKAAY ...ttt bbbt bbb bbb bbb bbbt b bbb 246
L4722 T SR 247
WVITE L.ttt bt bt R et R R R R bRt bR e R bRt Ee bt et b e ene 247
LAY L1 3 RS POTPSRPRRPRIN 135, 247, 429
RTA AT 1o (oY RS 71,72
WVINAOW IMIBNU ...ttt st bbbt h e e e b e b bt e bt e b e e bt e neembebeebenbeebeebeeneebenee s 58
WVINAOWSTALE ...ttt et b bbbt e st e e et e e b e bt e b e e bt e b e e heem e e beeb e s benbeeb e et e s bt ab e e e enbees 136
RT3 OSSOSO 248
RTAT LT 0 AT o TSRS 136
LT (-SSRSO 248
WIItING YOUE MACIO PrOGIAM .. .eiuiiuieieiteitesteeteaseeseeseestessestessesseeseessessessessessesssasassesssessessessessessessesssnsenssessessens 13
X
D, OSSOSO 37
Y
D L OO 248
B (0T 5 1Y o o PSSR 149
Z
FA O] (0 L OSSOSO 109

506

	 Visual CommBasic Overview
	Introduction to Visual CommBasic
	Writing your macro program
	Visual CommBasic Fundamentals
	Visual CommBasic Tutorial
	Visual CommBasic and other Basics
	How VCBasic Compares to Visual Basic and Word Basic
	

	Visual CommBasic Reference
	 Reference Topics
	Conventions See Also Help Typographic Conventions
	Object Handling See Also
	Dynamic Data Exchange (DDE) See Also
	 Alphabetical List
	Events
	Methods
	Properties
	Data Types and Expressions
	Application Data Types (ADTs)
	Data Type Conversions
	Dynamic Arrays
	Expressions
	

	Variant Data Type
	Formatting Data for Display
	Formatting Numbers
	Formatting Date/Times
	Formatting Numbers in Scientific Notation
	Formatting Strings

	Controls and Dialogs
	Visual CommBasic Control Reference
	Creating and Modifying Controls
	Control Palette
	 Dialog Boxes See Also
	Dialog Functions and Statements
	 Property Sheet

	Error Trapping and Handling
	 Error Handling See Also
	Encountering Run-Time Errors
	Trappable Errors
	 Trapping Errors Returned by VCBasic
	 Trapping User-Defined (Non-VCBasic) Errors

	Visual CommBasic Editor
	Menus and Toolbars
	Menus and Toolbars
	Debug Menu
	Edit Menu
	

	Edit:Alignment Menu
	

	File Menu
	Help Menu
	Run Menu
	View Menu
	Window Menu

	Debugging
	Testing and Debugging an Interface
	Debug Tools
	Setting Breakpoints
	The STOP Statement

	Examples
	Sample Macros
	Program Examples
	 Using the Examples
	Primary Control
	Secondary Controls
	Dialog Box Records
	Line Continuation
	DDEInitiate Function
	User-defined Numeric Formats
	Inserting Characters into the Output String
	Sectioning Numeric fmt Specifications
	 GetCurValues Statement
	GetObject Function
	Check Box Events

	
	Check Box Methods

	
	Check Box Properties
	Clipboard Methods
	Combo Box Events
	Combo Box Methods
	Combo Box Properties
	Edit Control Events
	Edit Control Methods
	Edit Control Properties
	Form Events
	Form Methods
	Form Properties
	Group Box Events
	Group Box Methods
	Group Box Properties
	Label Control Events
	Label Control Methods
	Label Control Properties
	List Box Events
	List Box Methods
	List Box Properties
	Option Button Events
	Option Button Methods
	Option Button Properties
	Picture Box Events
	Picture Box Methods
	Picture Box Properties
	Push Button Events
	Push Button Methods
	Push Button Properties
	Scroll Bar Events
	Scroll Bar Methods
	Scroll Bar Properties
	Activate Event
	Change Event
	Click Event
	Common Event
	DblClick Event
	Deactivate Event
	DragDrop Event
	DragOver Event
	EditChange Event
	GotFocus Event
	KeyDown Event
	KeyPress Event
	KeyUp Event
	Load Event
	LostFocus Event
	MouseDown Event
	MouseMove Event
	MouseUp Event
	Resize Event

	
	RightClick Event
	Scroll Event
	Timer Event
	Unload Event
	AddItem Method
	CanUndo Method
	Clear Method
	DeleteString Method
	Directory Method
	Drag Method
	EmptyUndoBuffer Method
	FindString Method
	FindStringExact Method
	FormatLines Method
	GetData Method
	GetFormat Method
	GetLineFromChar Method
	GetLineText Method
	GetSel Method
	GetSelCount Method
	GetText Method
	GetText Method
	InsertString Method
	Load Method
	LoadCursor Method
	LoadPicture Method
	Move Method
	Refresh Method
	ReplaceSelection Method
	ScrollText Method
	SelectString Method
	SelItemRange Method
	SetCaretIndex Method
	SetData Method
	SetFocus Method
	SetReadOnly Method
	SetSel Method
	SetSelection Method
	SetText Method
	Undo Method
	UnloadForm Method
	ZOrder Method
	 Check Box
	Clipboard
	 Combo Box
	 Edit Control
	 Form Control
	 Group Box
	 Label Control
	 List Box
	 Option Button
	 Picture Box
	 Push Button
	 Scroll Bar Controls
	Alignment Property

	
	AutoSize Property
	BackColor Property

	
	BorderStyle Property
	Cancel Property
	Caption Property
	Columns Property
	ColWidth Property
	CurSel Property
	List box
	Cursor Property
	Default Property
	Push button
	DragCursor Property
	DragMode Property
	Enable Property
	ExpandTabs Property
	Edit control
	FontBold Property
	FontItalic Property
	FontName Property
	FontSize Property
	FontStrikeThru Property
	FontUnderline Property
	ForeColor Property
	FormHeight Property
	Form
	FormWidth Property
	Form
	HasCaption Property
	Form
	Height Property
	HelpFileName Property
	Form
	HelpID Property
	HideSelection Property
	Hwnd Property
	Icon Property
	Form
	LargeChange Property
	Scroll bar
	Left Property
	Max Property
	Scroll bar
	MaxButton Property
	Edit control
	Min Property
	Scroll bar
	MinButton Property
	Form
	MultiLine Property
	Edit control
	MultiSelect Property
	List box
	Name Property
	PasswordChar Property
	Edit control
	Picture Property
	PictureCrop Property
	Group box
	PictureJustify Property
	Group box
	ScrollBars Property
	SmallChange Property
	Sorted Property
	Combo box
	Style Property
	Combo box
	SysMenu Property
	Form
	TabIndex Property
	TabStop Property
	Tag Property
	Text Property
	Combo box
	Tiled Property
	Form
	Timer Property
	Form
	Top Property
	Width Property
	WindowState Property
	Form
	WordWrap Property
	Label
	CrtAttr Function [VCBasic Extension]
	CrtCls Statement [VCBasic Extension]
	CrtCol Function
	CrtCopy Function [VCBasic Extension]
	CrtEmit Statement [VCBasic Extension]
	CrtFieldSearch Function
	CrtGet$ Function
	CrtPosition Function [VCBasic Extension]
	CrtQuery$ Function
	CrtRow Function [VCBasic Extension]
	CrtSearch Function [VCBasic Extension]
	CrtSetCursor Function [VCBasic Extension]
	CrtTrigger$ Function [VCBasic Extension]
	CrtTypeSet$ Function
	Emit Statement [VCBasic Extension]
	EmitBrk Statement [VCBasic Extension]
	FtQuery$ Function
	FtSet$ Function [VCBasic Extension]
	FtTrigger$ Function [VCBasic Extension]
	FtTypeSet$ Function
	IoInput$ Function [VCBasic Extension]
	IoQuery$ Function
	IoSet$ Function
	IoTrigger$ Function [VCBasic Extension]
	IoTypeSet$ Function
	RunMacro Statement
	Shutdown Statement [VCBasic Extension]
	WaitCrtCursor Function
	WaitCrtUnlock Function
	WaitDCD Function [VCBasic Extension]
	WaitKeystrokes Function
	WaitSilent Statement
	WaitStr Function [VCBasic Extension]
	WaitTime Function
	Terminology
	Your First Macro
	Step 1. Creating the user interface.
	Step 2. Setting the controls' properties.
	Step 3. Writing the scripts.
	Step 4. Running the macro.
	Class List
	Clipboard Example
	 Environ Function Example
	 Input Function
	Input Statement
	 Line Input Statement
	 Me
	 Rem Statement Example
	 Tab Function
	 Data Types See Also
	Step 1: Define a dialog box
	Step 2: Write a dialog box function
	Step 3: Display the dialog box
	Step 1: Create an object variable to access the application
	Step 2: Use methods and properties to act on objects.
	Option 1: Trap error within body of code
	Option 2: Trap error using error handler
	 Derived Trigonometric Functions
	Assert Statement [VCBasic Extension]
	Help Typographic Conventions
	Other Ways to Halt Programs
	AppClassActivate Statement
	' Abs Function Example
	' AppActivate Statement Example
	' Asc Function Example
	' Atn Function Example
	' Beep Statement Example
	' Begin Dialog... End Dialog Statement Example
	' Button Statement Example
	'ButtonGroup Statement Example
	' Call Statement Example
	' CancelButton Statement Example
	' Caption Statement Example
	' CCur Function Example
	' CDbl Function Example
	' ChDir Statement Example
	' ChDrive Statement Example
	' CheckBox Statement Example
	' Chr Function Example
	' CInt Function Example
	' Clipboard Example
	' CLng Function Example
	' Close Statement Example
	' ComboBox Statement Example
	' Command Function Example
	' Const Statement Example
	' Cos Function Example
	' CreateObject Function Example
	' CSng Function Example
	' CStr Function Example
	'CStrings Metacommand Example
	'CurDir Statement Example
	' CVar Function Example
	' CVDate Function Example
	' Date Function Example
	' Date Statement Example
	' DateSerial Function Example
	' DateValue Function Example
	' Day Function Example
	' DDEAppReturnCode Function Example
	' DDEExecute Statement Example
	' DDEInitiate Function Example
	' DDEPoke Statement Example
	' DDERequest Function Example
	' DDETerminate Statement Example
	' Declare Statement Example
	' Dialog Function Example
	' Dialog Statement Example
	' Dim Statement Example
	' Dir Function Example
	' DlgControlID Function Example
	' DlgEnable Statement Example
	' DlgEnable Function Example
	' DlgEnd Statement Example
	' DlgFocus Function Example
	' DlgFocus Statement Example
	' DlgListBoxArray Function Example
	' DlgListBoxArray Statement Example
	' DlgSetPicture Statement Example
	' DlgText Function Example
	' DlgText Statement Example
	' DlgValue Function Example
	' DlgValue Statement Example
	' DlgVisible Function Example
	' DlgVisible Statement Example
	' Do...Loop Statement Example
	' DoEvents Statement Example
	' DropComboBox Statement Example
	' DropListBox Statement Example
	' Environ Statement Example
	' Eof Function Example
	' Erase Statement Example
	' Erl Function Example
	' Err Function Example
	' Err Statement Example
	' Error Function Example
	' Error Statement Example
	' Exit Statement Example
	' Exp Function Example
	' FileAttr Function Example
	' FileCopy Statement Example
	' FileDateTime Function Example
	' FileLen Function Example
	' Fix Function Example
	' For...Next Statement Example
	' Format Function Example
	' FreeFile Function Example
	' Function...End Function Example
	' FV Function Example
	' Get Statement Example
	' GetAttr Function Example
	' GetField Function Example
	' GetObject Function Example
	' Global Statement Example
	' GoTo Statement Example
	' GroupBox Statement Example
	' Hex Function Example
	' Hour Function Example
	' If...Then...Else Function Example
	Include Metacommand Example
	' Input Function Example
	' Input Statement Example
	' InputBox Function Example
	' InStr Function Example
	' Int Function Example
	' IPmt Function Example
	' IRR Function Example
	' Is Operator Example
	' IsDate Function Example
	' IsEmpty Function Example
	' IsMissing Function Example
	' IsNull Function Example
	' IsNumeric Function Example
	' Kill Function Example
	' LBound Function Example
	' LCase Function Example
	' Left Function Example
	' Len Function Example
	' Let (Assignment Statement) Example
	' Like Operator Example
	' Line Input Statement Example
	' ListBox Statement Example
	' Loc Function Example
	' Lock Function Example
	' Lof Function Example
	' Log Function Example
	' Lset Statement Example
	' LTrim Function Example
	' Mid Statement Example
	' Mid Function Example
	' Minute Function Example
	' MkDir Statement Example
	' Month Function Example
	' Msgbox Function Example 'This example displays one of each type of message box.
	' Msgbox Statement Example
	' Name Statement Example
	' New Operator Example
	NoCStrings Metacommand Example
	' Nothing Function Example
	' Now Function Example
	' NPV Function Example
	' Null Function Example
	' Object Class Example
	' Oct Function Example
	' OKButton Statement Example
	' On ..Goto Statement Example
	' On Error Statement Example
	' Open Statement Example
	' OptionButton Statement Example
	' OptionGroup Statement Example
	' Option Base Statement Example
	' Option Compare Statement Example
	' Option Explicit Statement Example
	' PasswordBox Function Example
	' Picture Statement Example
	' Pmt Function Example
	' PPmt Function Example
	' Print Statement Example
	' PushButton Statement Example
	' Put Statement Example
	' PV Function Example
	' Randomize Statement Example
	' Rate Function Example
	' ReDim Statement Example
	' Rem Statement Example
	' Reset Statement Example
	' Resume Statement Example
	' Right Function Example
	' RmDir Statement Example
	' Rnd Function Example
	' Rset Statement Example
	' RTrim Function Example
	' Second Function Example
	' Seek Function Example
	' Seek Statement Example
	' Select Case Statement Example
	' SendKeys Statement Example
	' Set Statement Example
	' SetAttr Statement Example
	' SetField Function Example
	' Sgn Function Example
	' Shell Function Example
	' Sin Function Example
	' Space Function Example
	' Spc Function Example
	' SQLClose Function Example
	' SQLError Function Example
	' SQLExecQuery Function Example
	' SQLGetSchema Function Example
	' SQLOpen Function Example
	' SQLRequest Function Example
	' SQLRetrieve Function Example
	' SQLRetrieveToFile Function Example
	' Sqr Function Example
	' Static Statement Example
	' StaticComboBox Statement Example
	' Stop Statement Example
	' Str Function Example
	' StrComp Function Example
	' String Function Example
	' Sub...End Sub Function Example
	' Tab Function Statement Example
	' Tan Function Example
	' Text Statement Example
	' TextBox Statement Example
	' Time Function Example
	' Time Statement Example
	' Timer Function Example
	' TimeSerial Function Example
	' TimeValue Function Example
	' Trim Function Example
	' Type Statement Example
	' Typeof Statement Example
	' UBound Function Example
	' UCase Function Example
	' Unlock Function Example
	' Val Function Example
	' VarType Function Example
	' Weekday Function Example
	While...Wend Structure Example
	' Width Statement Example
	With Statement Example
	Write Statement Example
	' Year Function Example
	 CrtAttr Example
	CrtCopy Example
	CrtEmit Example
	CrtFieldSearch_Example
	CrtQuery Example
	CrtRow Example
	CrtSearch Example
	CrtSetCursor Example
	CrtTrigger Example
	CrtTypeSet Example
	Emit Example
	FtQuery Example
	FtSet Example
	CrtGet Example
	CrtPosition Example
	FtTrigger Example
	FtTypeSet Example
	IoInput Example
	IoQuery Example
	IoSet Example
	IoTrigger Example
	IoTypeSet Example
	WaitCrtCursor Example
	WaitCrtUnlock Example
	WaitDCD Example
	WaitKeystrokes Example
	WaitSilent Example
	WaitStr Example
	WaitTime Example
	' DDE Example
	AppClassActivate Example
	Me Example
	CrtCol_Example
	QuickSort Program Example
	Bitmap Viewer Program Example

