

NonStop SSL Server (NSSL)

Crystal Point

Version 3.3

Document History:
Document version 3.3 issued April 21, 2009

This product includes software developed by the OpenSSL Project for use in the OpenSSL Toolkit
(http://www.openssl.org/).

Copyright © 1998-2001 The OpenSSL Project. All rights reserved

This product includes software developed by the comForte GmbH (http://www.comforte.com/).
Copyright © 2005 comForte GmbH. All rights reserved

This manual was produced by:

Crystal Point
19515 North Creek Parkway #204

Bothell, WA 98011
USA

Copyright © 2007-2009 Crystal Point. All rights reserved.

This document is the property of Crystal Point and the information contained herein is confidential. This document, either
in whole or in part, must not be reproduced or used for purposes other than that for which it has been supplied, without
prior written permission or, if any part hereof is furnished by virtue of a contract with a third party, as expressly authorized
under that contract.

NSSL Server - NonStop SSL Server Contents • iii

Contents

Preface 8
Who Should Read this Guide..8
Document History..9

Introduction 13
What Is the NSSL Server?..13
NSSL Features..15

SSL ..15
Non-Stop Availability..15
Parallel Library Support ...15
Performance...15
NSSL as a Web Server..15
NSSL as a Secure Web Server ...16
NSSL as a Secure Proxy for Telnet Access ..17
Secure Telnet Access Overview..18
NSSL as a Secure Proxy for Generic TCP/IP Client/Server Applications
Access..18
NSSL as a Secure FTP Proxy ...19
NSSL as a Plain FTP Client Proxy ..20
NSSL as a plain FTP Server Proxy ...20
NSSL as a Secure ATTUNITY Server Proxy...20
NSSL as a Proxy to Secure IBM Websphere MQ ...21
NSSL as a Proxy to Secure EXPAND Over IP Traffic...................................21
NSSL as a Secure Proxy for ODBC/MX Traffic ...22
Protecting Plain Ports with NSSL as a Multi-Homed Proxy...........................23
Using NSSL to Limit the Remote IP Addresses...23

Installation 24
System Requirements...24
Installation on the NonStop Server ...25

Installing NSSL on the NonStop System ...25
Considerations for installing on different NonStop server versions...............25
Installing the License File...26

Running NSSL as a Plain HTTP Server ...28
Running NSSL as a Secure HTTPS Server ...29
Running NSSL as a Secure Telnet Proxy...30
Running NSSL as a Secure Client/Server Proxy..31

Running NSSL as a Secure RSC Proxy ..31
Running NSSL as a Secure Attunity Proxy..32

Running NSSL as a Secure FTP Proxy..33
Running NSSL as a Secure WebSphere MQ Proxy...35
Running NSSL as an SSL Tunnel for EXPAND-Over-IP Lines36

Starting NSSL ..36

iv • Contents NSSL Server - NonStop SSL Server

Load Balancing and Fault-Tolerance of EXPAND over SSL38
Optimizing Throughput...39
Multi-Line Path Installation Sample ...39

Running NSSL as an SSL Tunnel for ODBC/MX Connections41

Configuring and Running NSSL 42
Configuration Overview...42

The Configuration File..43
PARAM Commands...44
Startup Line Parameters ..44

Starting NSSL ...45
Security Considerations ..46

Protecting Against the Man-in-the-Middle Attack...46
Protecting the Private Key File...46
If the Private Key Is Compromised ..46

NSSL Parameter Reference ...47
Parameter Overview ..47
ALLOWCERTERRORS ...49
ALLOWIP ...51
AUDITASCIIONLY ...52
AUDITASCIIDUMPLENIN..52
AUDITASCIIDUMPLENOUT..52
AUDITCONSOLE...53
AUDITFILE...53
AUDITFILERETENTION..54
AUDITFORMAT ...54
AUDITLEVEL ...55
AUDITMAXFILELENGTH ..56
CACERTS..56
CIPHERSUITES ..57
CLIENTAUTH...58
CLIENTCERT ..58
CLIENTKEY ...59
CLIENTKEYPASS ...60
CONFIG ...60
CONFIG2 ...61
CONTENTFILTER ...61
DENYIP..63
DONOTWARNONERROR...64
FTPALLOWPLAIN ...64
FTPCALLOW200REPLY ...65
FTPLOCALDATAPORT...65
FTPMAXPORT ..66
FTPMINPORT..66
HTTPBASE ..67
HTTPZIP ..67
INTERFACE...68
KEEPALIVE ...68
LICENSE..69
LOGCONSOLE..69
LOGEMS..70
LOGFILE..70
LOGFILERETENTION ...71
LOGFORMAT ..72
LOGFORMATCONSOLE...72

NSSL Server - NonStop SSL Server Contents • v

LOGFORMATEMS ..72
LOGFORMATFILE...73
LOGLEVEL ..74
LOGLEVELCONSOLE...74
LOGLEVELEMS ..75
LOGLEVELFILE...75
LOGMAXFILELENGTH ...76
LOGMEMORY ...76
MAXSESSIONS...77
MAXVERSION ...77
MINVERSION ..77
PASSIVE..78
PEERCERTCOMMONNAME ..78
PEERCERTFINGERPRINT...79
PORT ...80
PTCPIPFILTERKEY ..81
SERVCERT..81
SERVKEY ..82
SERVKEYPASS ..82
SLOWDOWN ...83
SOCKSHOST, SOCKSPORT, SOCKSUSER...83
SUBNET...84
SWAPCOMSECURITY..85
TARGETINTERFACE..85
TARGETHOST ..86
TARGETPORT ..86
TARGETSUBNET..87
TCPIPHOSTFILE...87
TCPIPNODEFILE ..88
TCPIPRESOLVERNAME ..88
TCPNODELAY...89
TRUST ...89

Multiple Configurations in a Single NSSL Process...90
Non-Stop Availability...90

Configuring NSSL as a Generic Process (G series)......................................91
Configuring NSSL as a Static Pathway Server (D series)92

Configuring NSSL as Multi-Homed Proxy...92
Configuring a Loopback TCP/IP Process ..93

Monitoring NSSL...93
Overview ..93
Customizing the Log Format..95
Using SHOWLOG to View a Log File ..96
Logfile/Auditfile rollover using round robin...99
Web Server Log ...99

Command Interface NSSLCOM..101
Usage of NSSLCOM: a Sample Session...102
Supported Commands ...103
Command Reference for CONNECTION Commands.................................104
SSLINFO Command ..106
RELOAD CERTIFICATES Command ...106

Web Server Reference 108
Supported MIME Types ..108
Serving HTTP Contents ..108

Serving HTTP Contents from a ZIP Archive ..109

vi • Contents NSSL Server - NonStop SSL Server

Mapping URLs to Disk Files...110

SSL Reference 111
Secure Sockets Layer...111

The History of SSL...111
SSL Features ...111

Implementation Overview ...112
Cipher Suites..112
Auditing ..113
Flexibility ..113
X.509 Certificates...113

The Certificate Tools...114
The Public/Private Key Pair ...114
The Certificate Signing Request ..115
Obtaining a Certificate from a Third Party CA ...115
Acting as Your Own CA ...116

Configuring SSL for Production Running as SSL Server ...117
Using Your Own Server Key and Certificate Files118
Starting NSSL for Production as SSL Server ..119

Configuring SSL for Production as SSL Client ...120
TLS Alerts ...122

Performance Considerations 123
Introduction ...123
Performance Analysis of SSL Session Establishment..124
Performance analysis of SSL FTP traffic..124
Performance Analysis of SSL EXPAND Traffic ..125
Summary...126

Troubleshooting 127
Troubles with the Browser ..127

Browser unable to connect ..127
Browser displaying garbage page ...127
Connection closed by NSSL immediately after setting-up a secure
connection..127
HTTP 404 – File not found...127

Troubles with NSSL ..128
Address already in use ..128
Could not open xxx file...128
Decode error ..128
Handshake error ..128
Invalid address...128
Problem with checking license file ...128
Security violation (error 4013)..129

Appendix 130
NSSL Log Messages and Warnings...130

Startup Messages ..130
Warning Messages ..133
Informational Messages...134
Fatal Errors ..134

Index 136

NSSL Server - NonStop SSL Server Contents • vii

8 • Preface NSSL Server - NonStop SSL Server

Preface

Who Should Read this Guide
This document is for system administrators or web masters who are
responsible for installing and configuring the NonStop SSL Proxy (NSSL) to
secure Telnet sessions in conjunction with OutsideView or other telnet client.
Instructions are also provided for configuring NSSL as a secure proxy for
FTP.

As NSSL can also be used as a standalone NonStop web server, this guide
also instructs web masters how any HTTP content can be served by the
NSSL HTTP server.

Those interested in details of how NSSL handles certificates and how
certificates can be generated using the Tools supplied by Crystal Point within
NSSL, can also find that information in this document, as well.

NSSL Server - NonStop SSL Server Preface • 9

Document History
Version 3.3

• Contains information corresponding to NSSL Version 1058 or later

• The new parameters AUDITASCIIONLY, AUDITASCIIDUMPLENIN,
AUDITASCIIDUMPLENOUT, FTPLOCALDATAPORT, INTERFACE,
TARGETINTERFACE have been documented

• The new cipher suites 0.1 and 0.2 have been documented

• The parameters which can be changed with the SET command of NSSLCOM
have been updated

Version 3.2
• Contains information corresponding to NSSL Version 1054 or later

• The new parameters DONOTWARNONERROR, CONTENTFILTER,
MAXSESSIONS, SOCKSHOST, SOCKSPORT and SOCKSUSER have been
documented

• The NSSLCOM STATUS command now displays the number of sockets as well
as the total CPU usage of NSSL

• The OpenSSL library was updated from OpenSSL 0.9.7d to 0.9.8b

• The new NSSLCOM command CONNECTIONS, STATS is documented in
chapter "Monitoring NSSL"

• The extended SHOWLOG syntax allowing "filtering by timestamp" is documented
in the chapter "Monitoring NSSL"

• The parameters ALLOWIP and DENYIP can now be configured to only apply to
one direction, this has been documented

Version 3.1
• Contains information corresponding to NSSL Version 1051 or later

• The section "Monitoring NSSL" has been rewritten.

• The table of TLS alerts has been moved to the "SSL Reference" section.

• The documentation for the parameters PEERCERTCOMMONNAME and
PEERCERTFINGERPRINT has been corrected.

• An error in the documentation of the PASSIVE parameter has been fixed.

Version 3.0
• Contains information corresponding to NSSL Version 1047 or later

• Execution of NSSLCOM commands can now be restricted, using the new
parameter NSSLCOMSECURITY.

• The number of licensed CPU's for each Itanium system may now be included in
the license file.

• The new NSSLCOM command SSLINFO will display the local certificate chain.

10 • Preface NSSL Server - NonStop SSL Server

• The new NSSLCOM command RELOAD CERTIFICATES allows for the changing
of the server certificate chain without having to restart NSSL.

• The new parameters LOGEMS, LOGFORMATEMS, LOGLEVELEMS enable
logging to EMS.

• The new parameters PEERCERTFINGERPRINT and
PEERCERTCOMMONNAME support verification of remote certificates.

• The documentation for the CLIENTAUTH parameter was misleading and has been
rewritten.

Version 2.9
• Contains information corresponding to NSSL Version 1046 or later

• Considerations for installing on Itanium systems have been added in section
"Considerations for installing on different NonStop server versions" in chapter
"Installation".

• The "rollover" of both LOG and AUDIT files has been improved. This is reflected in
numerous locations within the manual, notably:

o see new parameters LOGFILERETENTION and
AUDITFILERETENTION

o see new NSSLCOM command ROLLOVER LOGFILE

o see new section "Logfile/Auditfile rollover using round robin"
in chapter "Configuring And Running NSSL".

• The formatting of the two different "targets" for log messages (LOGFILE and
LOGCONSOLE) is more flexible now. Please see the new parameters
LOGFORMATFILE, LOGFORMATCONSOLE, LOGLEVELFILE,
LOGLEVELCONSOLE as well as the new NSSLCOM command LOGMESSAGE

• The new parameters TCPIPHOSTFILE, TCPIPNODEFILE and
TCPIPRESOLVERNAME allow the setting of DEFINEs from the runtime
parameter string or configuration file.

• A new parameter TCPNODELAY allows to control activating RFC1323 on the
sockets

• References to external documents on SSL have been updated

Version 2.8
• Contains information corresponding to NSSL version 1045 or later.

• discusses new feature of auditing plain or secure FTP traffic in FTPS mode:

o see sections "NSSL as a plain FTP Server Proxy " in chapter
"Introduction" and "To start the NSSL FTP Server Proxy with
an audit log" in chapter "Installation" for an overview.

o see new parameters AUDITLOG, AUDITCONSOLE,
AUDITFORMAT, AUDITLEVEL, AUDITMAXFILELENGTH,
FTPALLOWPLAIN for details on the new parameters.

• discusses new parameter FTPCALLOW200REPLY which switches on
compatibility to some older FTP/TLS servers.

• discusses new parameter LOGLEVELFILE which allows to set LOGLEVEL to
different values for output to LOGCONSOLE and LOGFILE.

NSSL Server - NonStop SSL Server Preface • 11

• discusses new parameter CONFIG2 which allows to configure a second
configuration file.

Version 2.7
• Contains information corresponding to NSSL version 1044 or later.

• The documentation of the parameter ALLOWCERTERRORS has been extended.

• The new run mode FTPCPLAIN has been added.

• The new run mode EXPANDS for encryption of Expand over IP traffic has been
added.

• The new run mode ODBCMXS for encryption of ODBC/MX traffic has been added.

Functional enhancements of NSSLCOM have been documented:

o The STATUS command now displays more information

o The parameters ALLOWIP,DENYIP,TRUST and
ALLOWCERTERRORS can now be changed through
NSSLCOM

• The new parameter PTCPIPFILTERKEY is documented.

• Support of the new MIME type "jnlp" is documented.

• The new parameter CLIENTAUTH and the changed functionality of the parameter
TRUST are documented.

Version 2.6
• Contains information corresponding to NSSL version 1040 or later

• New commands CONNECTIONS, INFO CONNECTION [,DETAIL],
RENEGOTIATE LPORT and SET LOGMEMORY have been added to NSSLCOM

Version 2.5
• Contains information corresponding to NSSL version 1036 or later

• The OpenSSL library was updated from openssl 0.9.7a to 0.9.7d

• Performance optimization:

o about 30 % bis 55 % less CPU usage for RSA handshake

o about 35 % less CPU usage for 3DES bulk encryption

o Chapter "Performance Considerations" was updated with
new measurement data.

• A new chapter about "SSL Client Authentication checking" when running in server
mode was added.

• New parameter ALLOWCERTERRORS

Version 2.4
• A new chapter about "SSL Client Authentication" has been added.

• Documentation for the new run modes MQS and MQC to support Websphere MQ.

• The parameters KEEPALIVE, CLIENTCERT, CLIENTKEY, CLIENTKEYPASS
have been added..

12 • Preface NSSL Server - NonStop SSL Server

NSSL Server - NonStop SSL Server Introduction • 13

Introduction

What Is the NSSL Server?
The NonStop SSL (NSSL) Server is a server program for the HP NonStop
Guardian platform designed to cover a lot of different usage scenarios. NSSL
can meet the following requirements:

• [HTTP] Acting as an easy-to-configure web server for the NonStop Guardian
platform which can be used to serve OutsideViewWEB via the HTTP protocol to a
standard network browser.

• [HTTPS] Acting as a secure web server supporting the HTTPS protocol to be able
to deploy OutsideViewWEB in a secure fashion.

• [TELNETS] Acting as a secure proxy server for the NonStop TELSERV, to secure
the communication between the NonStop system and a secure telnet client, such
as OutsideView.

• [PROXYS] Acting as a secure proxy server for plain TCP/IP servers acting as
Server Gateways for Client/Server-Middleware, such as the NonStop RSC
product.

• [PROXYC] Acting as a client proxy for plain TCP/IP client programs, to secure the
communication between the NonStop Server and remote SSL-enabled server
programs.

• [FTPS] Acting as a secure proxy server for plain FTP servers, such as the
NonStop FTPSERV, to secure the communication between the NonStop system
and a secure FTP client, such as OutsideView version 7.3 or above, or with any
FTP client which is SSL-enabled by the Remote Proxy available from Crystal
Point.

• [FTPC] Acting as a client proxy for the NonStop FTP client program, to secure the
communication between the NonStop system and a secure FTP server, such as
the WS_FTP Server, or with any FTP server which is SSL-enabled by the Remote
Proxy available from Crystal Point.

• [FTPCPLAIN] Acting as a "plain-to-plain client proxy" for the NonStop FTP client
program, to enable unencrypted FTP file transfers with PASSIVE mode.

• [ATTUNITYS] Acting as a server proxy for the NonStop Attunity program, to
secure the communication between the NonStop system and a remote Attunity
Client. The remote client will be secured using the Remote Proxy component.

14 • Introduction NSSL Server - NonStop SSL Server

• [MQS] Acting as a server proxy for the WebSphere MQ program, to secure the
communication between the non secure 5.1 release on the NonStop system and a
secure remote WebSphere MQ Client (5.3).

• [MQC] Acting as a client proxy for the WebSphere MQ program, to secure the
communication between the non secure 5.1 release on the NonStop system and a
secure remote WebSphere MQ Server (5.3).

• [EXPANDS] Creating an SSL tunnel to secure EXPAND over IP lines.

• [ODBCMXS] Acting as a server proxy for the ODBC/MX protocol.

To support the above functions, NSSL can be started in different modes.
These so-called "run modes" of NSSL are listed in square brackets in the list
above. Multiple NSSL processes can co-exist on a single NonStop system to
support concurrent (secure and non-secure) web and proxy services, as well
as multiple TCP/IP processes.

NSSL is delivered with a license file which will determine the allowed run
modes of NSSL. Without a license file, NSSL will only run as a Web server
NOT capable of SSL ("HTTP" mode). Note that this run mode ("plain web
server") is the only run mode where NSSL will not use SSL.

The following table lists all run modes of NSSL:

Run Mode Usage

FTPC FTP client proxy

FTPS FTP server proxy

FTPCPLAIN FTP client proxy without encryption

HTTP HTTP server

HTTPS Secure HTTP server

PROXYS Generic SSL server proxy

PROXYC Generic SSL client proxy

TELNETS Secure Telnet proxy

ATTUNITYS Secure Attunity proxy

MQS Secure WebSphere MQ server
proxy

MQC Secure WebSphere MQ client proxy

EXPANDS Secure EXPAND proxy

ODBCMXS Secure ODBC/MX proxy

NSSL Server - NonStop SSL Server Introduction • 15

NSSL Features

SSL
NSSL uses SSL (Secure Socket Layer) in the TLS (Transport Layer Security)
variant as standardized by the IETF in RFC 2246, to secure an application on
the transport layer. SSL 2.0, SSL 3.0 and TLS 1.0 (SSL 3.1) are supported.
NSSL offers multiple configurable cipher suites with RSA key exchange with
public key lengths up to 2048 bits and up to 168 bit Triple DES for bulk
encryption.

Non-Stop Availability
Using NSSL ensures non-stop availability of NonStop based applications
across the network. Running on the Guardian platform, NSSL takes
advantage of the NonStop fundamentals.

On G series systems, NSSL services can be configured as generic
processes, enabling automatic recovery from failures, such as CPU outages.
For D series systems, non-stop availability can be achieved by implementing
NSSL services as static PATHWAY servers monitored by a non-stop
Pathway Monitor.

Parallel Library Support
NSSL fully supports the NonStop Parallel Library TCP/IP. Please see the
parameter SUBNET in the parameter reference part for configuration details.

Performance
NSSL is optimized for performance on the NonStop Guardian platform. The
number of concurrent sessions (for both HTTP or proxy sessions) is virtually
only limited by the system's resources. Running as a Telserv proxy, NSSL
can easily handle the maximum number of 255 sessions supported by a
single Telserv process.

The performance impact of a single unencrypted terminal session is minimal.
Tests have shown that the additional load generated by an NSSL proxy for
tunneling the data (without encrypting) is negligible (a "FILEINFO *.*" showed
an increase in overall CPU busy time of all relevant processes smaller than
3%).

The performance impact is larger for the FTPS mode, as much more data
per second is sent over the network.

Please see the "Performance Considerations" chapter for a detailed
performance analysis of SSL sessions.

NSSL as a Web Server
Running as a HTTP server, NSSL provides the functionality required to
download OutsideViewWEB or AppView applet files with standard browsers

16 • Introduction NSSL Server - NonStop SSL Server

like Microsoft Internet Explorer or Netscape Navigator. The certificate tools
may also be served by NSSL executing as a HTTP server.

NSSL as a HTTP server downloading OutsideViewWEB to a browser.

Unlike a full blown web server, NSSL is very easy to configure. This avoids
the configuration and management overhead of a standard web server if one
does not already exist. Last but not least NSSL supports the native Guardian
platform, enabling deployment of OutsideViewWEB or AppView without
having to install OSS on the NonStop server or introduce a separate web
server machine representing a potential point of failure.

Overcoming Guardian File System Restrictions
The Guardian file system only supports file names with 8 characters without
filename extensions. Furthermore, it is a "flat" file system. Although allowing
to group files in "subvolumes", it does not provide a multi-level directory
hierarchy like Windows or Unix. These restrictions can be an obstacle when
deploying HTTP contents with a Guardian-based web server. HTTP contents
is usually grouped in hierarchical structures and makes heavy use of long file
names and extensions (e.g. .html, .gif, .jpg, .jar).

To overcome the restrictions of the Guardian file system, NSSL can serve
HTTP contents from a standard ZIP file containing files with their full (long)
path names. Thus, the HTTP contents can be easily developed and
organized on a standard workstation. For deployment with NSSL the required
files simply need to be packed with a standard ZIP tool and transferred to the
NonStop server.

NSSL as a Secure Web Server
NSSL also supports the HTTPS protocol (when a license that enables that
feature is installed). HTTPS means that the HTTP session is encrypted using
the SSL (Secure Sockets Layer) protocol.

The figure below illustrates how documents may be securely downloaded to
an SSL capable browser. The browser connects to an https URL, indicating
that the requested resource should be downloaded securely. On the
NonStop server side, NSSL will accept the connection, perform the SSL
handshake to setup a secure session and encrypt the requested resource
when sending it to the browser.

HP NonStopBrowser

OVWeb Port 8080 NSSL

OVWeb
files

HTML
JAR
GIF

...

http://…/ovweb.html

NSSL Server - NonStop SSL Server Introduction • 17

NSSL acting as a HTTPS server for securely downloading OutsideViewWEB to a
browser

NSSL as a Secure Proxy for Telnet Access
NSSL can be run as a proxy process to front-end TCP/IP servers accepting
plain TCP connections, such as the NonStop Telserv process. With its SSL
support, NSSL will enable secure communication to clients, which also
support the SSL protocol, such as OutsideView.

NSSL as an SSL proxy front-ending the standard NonStop Telserv process

Acting as a proxy server, NSSL will accept SSL connections from the
network and "tunnel" them to a plain TCP server. Encrypted data received
from the SSL client will be decrypted and forwarded to the server. Plain data
received from plain TCP server will be encrypted and sent to the SSL client.
For example, from the Telnet server's point of view the proxy acts as a
normal Telnet client, while from an SSL telnet client the NSSL proxy
authenticates the Telnet server and encrypts/decrypts the session's payload.

Typically, an NSSL proxy will reside on the same IP process on the same
system as the TCP server it tunnels the session to, which allows creation of a
"local loopback" session (a connection to "127.0.0.1") for the unencrypted

HP NonStopBrowser

OVWeb
Window Port 8443 NSSL

httpsd

OVWeb
deployment

files

HTML
JAR
GIF

...

https://…/ovweb.html

secure connection

PC

-OutsideView

HP NonStop

TCP/IP Process

Port 8423

Port 23

NSSL
proxy

Telserv
Process

SSL
connection

local loop-back

18 • Introduction NSSL Server - NonStop SSL Server

data. This avoids having any unencrypted data traverse the network. For a
local loopback, the data is only being passed within the local TCP/IP stack.

One instance of an NSSL proxy handles SSL connections received on a
single IP process and port number and tunnels them to a single target port.
Hence if multiple plain ports need to be secured, such as multiple Telnet
Servers, an NSSL process needs to be started for each plain TCP port.

Secure Telnet Access Overview
Combining NSSL's functionality as a HTTPS web server and SSL proxy will
allow you to completely secure your NonStop Telnet application access.
Client workstations running SSL-enabled terminal emulation software such
as OutsideView will access Telserv through the NSSL Secure Proxy.
Browser-based solutions with SSL telnet support (e.g. secure
OutsideViewWEB or AppView) accessing NonStop based applications, can
be deployed directly on the host the application is running on, without
installing OSS on your Guardian machine or installing a separate web server.

Secure application access with NSSL HTTPS server and SSL proxy

For a secure browser-based solution, you will need at least two NSSL
processes, one running as HTTPS server and another running as secure
Telserv proxy, as shown in the figure above. The OutsideViewWEB or
AppView applet will be securely downloaded using the NSSL HTTPS server.
Once initialized, the applet will initiate a secure telnet session via the NSSL
proxy.

NSSL as a Secure Proxy for Generic TCP/IP
Client/Server Applications Access
An NSSL proxy allows SSL encryption not only for Telnet but for any
Client/Server protocol facilitating TCP sockets. While NSSL acts as a secure

Browser

OVWeb

PC

OutsideView

HP NonStop

TCP/IP Process

Port 8443

Port 8423

Port 23

NSSL
httpsd

NSSL
proxy

Telserv

HTTPS

SSL Telnet

local loop-back

NSSL Server - NonStop SSL Server Introduction • 19

proxy for the server-side of the client/server communication, the client-side
may be enabled for SSL using the Remote Proxy available from Crystal
Point.

NSSL Client/Server proxy front-ending a server gateway process

NSSL as a Secure FTP Proxy
NSSL can be run as a proxy process to front-end the NonStop FTPSERV or
FTP process. With its SSL support, NSSL will enable secure communication
to FTP clients or servers, which support FTP over SSL/TLS according to
RFC-2228. SSL capable FTP clients are, for example, OutsideView, version
7.3 or above

NSSL as a SSL FTP proxy front-ending the standard NonStop FTPSERV process

HP NonStop

TCP/IP Process
PC

Remote
Proxy Secure C/S port NSSL C/S

proxySSL Connection

C/S port

Local loopback

C/S Server
Gateway
process

Client

HP NonStop

TCP/IP Process
PC

SSL-capable
FTP
client

Port 8421 +
Secure Data Ports

NSSL
FTPS proxySSL Connections

Port 21 +
Data Ports

Local loopback

FTPSERV

20 • Introduction NSSL Server - NonStop SSL Server

Secure file transfer with SecurFTP running in client mode

Acting as a proxy server, NSSL will use secure FTP connections with the
FTP partner and "tunnel" them to a plain FTP client or server.

The NSSL secure FTP proxy will intercept the communication on the FTP
command socket to add encryption for both the command and data sockets.
From the FTP server's or client's point of view the proxy acts as a normal
FTP partner, while for the remote SSL FTP partner the NSSL proxy acts as a
RFC-2228 compliant secure FTP server or client.

NSSL as a Plain FTP Client Proxy
NSSL can be used to overcome the limitation of the FTP client on the
NonStop platform: Acting as a plain proxy for the FTP client, it can allow file
transfers in PASSIVE mode initiated through the NonStop FTP client. The
architecture is identical as with SecureFTP running in client mode with the
only difference that the connections to the remote FTP server will not be
encrypted.

NSSL as a plain FTP Server Proxy
NSSL can be used to monitor FTP traffic in which the NonStop system is the
FTP server. NSSL will write a text file containing all commands issued by
remote FTP users on the NonStop system allowing for a tight monitoring of
FTP file transfers both in the Guardian and OSS File system. The
architecture is identical as with SecureFTP running in server mode with the
only difference that the connections to the remote FTP client will (optionally)
not be encrypted.

NSSL as a Secure ATTUNITY Server Proxy
NSSL can be run as a proxy process to front-end Attunity server components
running on the NonStop server. Started as a secure Attunity server proxy,

Partner System

HP NonStop
TCP/IP

Port 921

NSSL
FTPC
Proxy

FTP

Encrypted

FTP
Session

local
loop-back

FTP-TLS
Enabled
Server

Port
21

NSSL Server - NonStop SSL Server Introduction • 21

NSSL is aware of the Attunity client/server protocol, to support the redirection
of sessions to varying port numbers. Together with the Remote Proxy
available from Crystal Point NSSL will enable secure communication with
Attunity clients on remote systems.

NSSL as a Proxy to Secure IBM Websphere MQ
NSSL for MQ (MQS, MQC) enables SSL for the 5.1 release of WebSphere
MQ running on a NonStop platform. NSSL will smoothly interact with the
built-in SSL of WebSphere MQ 5.3 which is already available for other
platforms. As a true any-to-any platform solution, NSSL will also encrypt
WebSphere MQ traffic between multiple 5.1 nodes running on either the
NonStop platform or other platforms.

NSSL as a proxy for WebSphere MQ

NSSL as a Proxy to Secure EXPAND Over IP Traffic
NSSL for EXPAND (EXPANDS run mode) encrypts EXPAND over IP traffic
between two NonStop systems. It does so by creating a secure SSL session
between the two systems as depicted in the following diagram:

Proxy
plain

secure NSSL

Proxy
plain

secure

HP NonStop Application

Remote Proxy
plain

secure NSSL

Remote Proxy
plain

secure

Application

Mainframe,
Windows,
UNIX, ...

Application

unsecured
communication

Using NSSL to SSL- enable WebSphere MQ 5.1 for HP NonStop and other platforms

HP NonStop ,
Windows ,
UNIX , … .

Queue
Manager

WebSphere MQ 5.3

Queue Receive
Channel

Queue
Send

Channel

Queue
Manager

WebSphere MQ 5.1

QueueSend
Channel

Queue
Receive
Channel

Queue
Manager

WebSphere MQ 5.1

Queue

Send
Channel Queue

SSL secured
communication

Receive
Channel

22 • Introduction NSSL Server - NonStop SSL Server

NSSL as a proxy for EXPAND over IP traffic

The EXPAND line handler will exchange UDP traffic with an instance of
NSSL running on the same NonStop system; the two NSSL processes create
an SSL TCP session between the two systems to forward the traffic.

NSSL as a Secure Proxy for ODBC/MX Traffic
NSSL for ODBC/MX traffic encrypts ODBC/MX traffic between client
workstations and NonStop systems. ODBC/MX uses multiple TCP/IP
sessions between a single client and the NonStop system, however in
conjunction with the RemoteProxy available from Crystal Point, NSSL
"tunnels" multiple sessions over a single one as shown in the following
diagram:

NSSL as a proxy for ODBC/MX traffic

The "tunneling" approach has the following benefits:

• It is firewall-friendly, as only a single port needs to be opened between the
workstations and the clients.

• The configuration both of NSSL and the RemoteProxy is independent of the
number of ports used by ODBC/MX.

Please see the NSSL Quickstart guide for a detailed description on how to
set up the RemoteProxy component for ODBC/MX traffic.

NonStop system B

TCP / IP Process NSSL
EXPANDS

ProxySSL Connection

Local
loopback EXPAND

Line
handler

NonStop system A

TCP/IP ProcessNSSL
EXPANDS

Proxy

Local
loopbackEXPAND

Line
handler

HP NonStop

TCP/IP Process

PC

Remote
Proxy

Secure C/S
port

NSSL
ODBC/MX

proxySSL Connection
(single TCP session)

C/S
port

ODBC/MX
Server

processes
client

Multiple ODBC/MX
connections

Multiple

 ODBC/MX

connection s

ODBC/MX

NSSL Server - NonStop SSL Server Introduction • 23

Protecting Plain Ports with NSSL as a Multi-Homed
Proxy
If NSSL is used with a proxy run mode, you can configure different TCP/IP
process names for the listening and connecting sockets. One of the TCP/IP
processes could even be a loopback-only process, without any connection to
the network.

This "multi-homed" configuration allows protection of non-secure server ports
from external access. It also prevents a client proxy from being hijacked by
an external attacker.

NSSL as a multi-homed proxy with an internal loopback TCP/IP process

Using NSSL to Limit the Remote IP Addresses
NSSL can be configured to allow only certain remote IP addresses. By
default, NSSL will allow connections from any IP address; this behaviour can
be changed by

1 setting a "black list" of forbidden IP addresses using the DENYIP
parameter.

2 setting a "white list" of allowed IP addresses using the ALLOWIP
parameter.

 Note: the black list will take precedence over the white list: if an IP address
is matching both lists, it will NOT be allowed.

For details please see the description of the two parameters in the parameter
reference.

HP NonStop

TCP/IP Process

Proxy Secure
Listening Port

NSSL
Server
Proxy

NSSL
Client
Proxy

Loopback
TCP/IP Process

Plain Server
 Listening Port

Plain
Server

Plain
Client

Proxy Plain
 Listening Port

24 • Installation NSSL Server - NonStop SSL Server

Installation

System Requirements
To run NSSL in your environment your systems must meet the following
requirements:

HP NonStop host:

• D.45 or later

For browser HTTP access:

• Any HTTP 1.0 compliant network browser

For browser (secure) HTTPS access:

• Any SSL 3.0 or TLS 1.0 compliant network browser with strong encryption (i.e.
128bit encryption)

For secure Telnet sessions:

• OutsideView 7.2 or later.

• or any SSL 3.0 or TLS 1.0 compliant telnet client

For secure FTP sessions:

• Any RFC-2228 compliant FTP client or server, such as OutsideView, version 7.3
or above.

For secure middleware transport sessions:

• The Remote Proxy available from Crystal Point.

For secure WebSphere MQ sessions:

• On HP NonStop Host: MQSeries for HP NonStop systems, Version 5 Release 1

• On the remote system:

o either WebSphere MQ Version 5.3 (already SSL enabled)

o or the Remote Proxy for MQS (included with NSSL/MQ) and
a WebSphere MQ system

NSSL Server - NonStop SSL Server Installation • 25

Installation on the NonStop Server
After you have downloaded the files to your workstation, you should transfer
the NSSL installation archive (NSSLSINS.100) to your NonStop system, alter
the file code and run the installation program.

Installing NSSL on the NonStop System
1 Using your favorite file transfer program, transfer the NSSL

installation archive (NSSLSINS.100) in binary mode to your
NonStop system. Copy the file to the subvolume you want to
install NSSL on.

2 Alter the installation archive file code:
FUP ALTER NSSLSINS, CODE 100

3 Extract the archive by issuing the following command:
RUN NSSLSINS

The NSSL program files will now be copied to the current subvolume.

Considerations for installing on different NonStop
server versions
NSSL is available for the following NonStop server versions:

• on K- or S-series systems, NSSL will run on any operating system equal or greater
to Guardian release D45.

• NSSL is available for all Guardian releases on NonStop Integrity servers
("Itanium).

A full NSSL installation consists of the following object files:

• NSSL

• NSSLCOM

• SHOWLOG

NSSL and SHOWLOG are native object files and are delivered as two
different object files for K/S-Series (type 700 file) or Itanium (type 800 file).
NSSLCOM is an RISC object file and hence will run both on K/S series and
Itanium.

The following table shows how the different versions of those three objects
are delivered:

Component Object Type Naming

NSSL native object NSSL: 700 file
NSSLI: 800 file

NSSLCOM RISC object file NSSLCOM: 100 file

SHOWLOG native object SHOWLOG: 700 file
SHOWLOGI: 800 file

The rest of this manual assumes that the proper object files for your system
have been renamed as follows:

26 • Installation NSSL Server - NonStop SSL Server

• For K/S series systems no further action is necessary. The files NSSLI and
SHOWLOGI can be deleted.

• For Itanium systems

o the files NSSL and SHOWLOG should be deleted.

o the file NSSLI should be renamed to NSSL

o the file SHOWLOGI should be renamed to SHOWLOG

Installing the License File
For the run modes HTTPS, TELNETS, PROXYS, PROXYC, FTPS, FTPC,
FTPCPLAIN, MQS and MQC you need a license file from Crystal Point which
allows the usage of that run mode. The license file is tied to your system
number.

The license file should be called LICENSE (default if not otherwise specified
using the license parameter) and should reside on the same subvolume as
the NSSL object file. If you need to put the license file in a different location
you must use the PARAMETER LICENSE to specify the location. If there is a
problem with the license file, NSSL will issue a message and terminate:

08:46:08.69|20|--

08:46:08.69|10| comForte SWAP server version
T9999G06_18Sep2003_comForte_SSLD_S40_1031
08:46:08.69|10|using openssl version 0.9.7 - see http://www.openssl.org
08:46:08.70|10|config file: '(none)'
08:46:08.70|10|runtime args: 'TELNETS;PORT 9023;TARGETPORT 65023'
08:46:08.70|20|--------- start settings for Logging -----------
08:46:08.70|20| process name is $Y593
08:46:08.70|20| trace file is '*' ('*' means none)
08:46:08.71|20| max file length 20480000 bytes, length-check every 100
writes
08:46:08.71|20| console is '%' ('*' means none, '%' means home
terminal)
08:46:08.71|20| global maximum level is 9999, maximum dump length is
112
08:46:08.71|20|--------- end settings for Logging -------------
08:46:08.71|10|log level is 50
08:46:09.17|10|your system number is 12151
comForte NSSL server version T9999G06_18Sep2003_comForte_SSLD_S40_1031
--- Fatal Error:

 problem with checking license file:
 could not open license file 'LICENSE', error 4002

 --- aborting.

If the license file is proper you will see the expiration date in a log message
during startup:

NSSL Server - NonStop SSL Server Installation • 27

08:47:51.26|20|--

08:47:51.27|10| comForte SWAP server version T9999G06_18Sep2003_
comForte_SSLD_S40_1031
08:47:51.27|10|using openssl version 0.9.7 - see http://www.openssl.org
08:47:51.27|10|config file: '(none)'
08:47:51.27|10|runtime args: 'TELNETS;PORT 9023;TARGETPORT 65023'
08:47:51.27|20|--------- start settings for Logging -----------
08:47:51.28|20| process name is $Y594
08:47:51.28|20| trace file is '*' ('*' means none)
08:47:51.28|20| max file length 20480000 bytes, length-check every 100
writes
08:47:51.28|20| console is '%' ('*' means none, '%' means home
terminal)
08:47:51.28|20| global maximum level is 9999, maximum dump length is
112
08:47:51.29|20|--------- end settings for Logging -------------
08:47:51.29|10|log level is 50
08:47:51.62|10|your system number is 12151
08:47:51.81|10|license file check OK, license file 'LICENSE',
expiration is never
08:47:51.81|30|starting collecting of random data
08:47:54.92|10|collection of 64 bytes random data finished
08:47:55.22|20|dumping configuration:
[def] ALLOWIP <*>
[def] CACERTS <CACERT>
[def] CIPHERSUITES <0.4,0.10,0.5>
[def] DENYIP <>
[def] LICENSE <LICENSE>
[def] LOGCONSOLE <%>
[def] LOGFILE <*>
[def] LOGFORMAT <76>
[def] LOGLEVEL <50>
[def] LOGMAXDUMP <100>
[def] LOGMAXFILELENGTH <20000>
[def] MAXVERSION <3.1>
[def] MINVERSION <3.0>
[run] PORT <9023>
[def] RANDOMFEED <64>
[def] SERVCERT <SERVCERT>
[def] SERVKEY <SERVKEY>
[def] SERVKEYPASS <??11??>
[def] SLOWDOWN <0>
[def] SUBNET <$ZTC0>
[def] TARGETHOST <127.0.0.1>
[run] TARGETPORT <65023>
[def] TARGETSUBNET <$ZTC0>
[def] TESTWRONGDATASOCKET <0>
08:47:55.31|50|OpenSSL cipherstring 'RC4-MD5:DES-CBC3-SHA:RC4-SHA:'
08:47:55.31|30|loading Server Certificate from file 'SERVCERT'
08:47:55.43|20|adding CA Certificate Chain Level 1/1: 'CACERT'
08:47:55.43|30|loading next Certificate Chain file from file 'CACERT'
08:47:55.53|20|Fingerprint of Root CA is
<F9E29DFC22D687C20C353BC2E37F959A>
08:47:55.53|30|loading private key from file 'SERVKEY'
08:47:55.61|10|DEFINE =TCPIP^PROCESS^NAME has value '\COMF.$ZTC0'
08:47:55.61|10|parameter SUBNET will be ignored
08:47:55.61|20|TCP/IP process is \COMF.$ZTC0
08:47:55.61|20|secure-to-plain proxy started on target host 127.0.0.1,
target port 65023, source port 9023

28 • Installation NSSL Server - NonStop SSL Server

Running NSSL as a Plain HTTP Server
Since few configuration parameters are required for plain HTTP mode NSSL
can be easily started as a web server by a single RUN command. After the
NSSL process has been started you can immediately connect to your
NonStop system with your browser.

To Start the NSSL Web Server
1 At the command prompt, issue the following command:

RUN NSSL/NAME $HTTP/ HTTP; SUBNET $ZTC0; PORT 8080

where

• the keyword "HTTP" designates the NSSL run mode as a
HTTP server.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. You may omit this parameter, in which
case NSSL will assume $ZTC0 as default.

• the parameter "PORT" reflects the port number NSSL should
listen on for HTTP connections. Note, that to start an NSSL
web server on the well known HTTP port (80), SUPER group
rights will be required.

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

To Connect with a Browser

1 Point your browser to your NonStop system's IP address:
http://ipaddress:port

where

• ipaddress is the address of the TCP/IP process you started
NSSL on

• port the number you specified as PORT parameter in the
RUN NSSL command. If you started NSSL to listen on the
well known HTTP port (80) you can omit the ":port" portion.

2 Your browser should now display the NSSL welcome page.

NSSL Server - NonStop SSL Server Installation • 29

Running NSSL as a Secure HTTPS Server
NSSL is delivered with a set of sample certificate and key files required for
SSL. The default settings of the relevant SSL parameters point to these
sample files to allow an out-of-the-box installation for evaluation purposes.
Using the default settings, you can start NSSL as a secure web server by a
simple RUN command.

 Note: For a production installation, you should use your own server
certificate. Please refer to "Configuring SSL for production" in the "SSL
Reference" chapter for details.

To Start the NSSL Secure Web Server

1 At the command prompt, issue the following command:
RUN NSSL/NAME $HTTPS/ HTTPS; SUBNET $ZTC0; PORT 8443

where

• the keyword "HTTPS" designates the NSSL run mode as a
secure web server.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. You may omit this parameter, in which
case NSSL will assume $ZTC0 as default.

• the parameter "PORT" reflects the port number NSSL should
listen on for HTTPS connections. Note, that to start an NSSL
secure web server on the well known HTTPS port (443),
SUPER group rights will be required.

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

To Connect with Your Browser

1 Point your browser to your NonStop system's IP address:
https://ipaddress:port

where

• ipaddress is the address of the TCP/IP process you started
NSSL on

• port the number you specified as PORT parameter in the
RUN NSSL command. If you started NSSL to listen on the
well known HTTPS port (443) you can omit the ":port"
portion.

2 Your browser may now prompt you to accept the server
certificate as it is not known to the browser. Choose to accept it.

3 Your browser should now display the NSSL welcome page
indicating that it is operating in secure mode.

30 • Installation NSSL Server - NonStop SSL Server

 Note: NSSL is delivered with a test server certificate signed by a test CA
which should only be used for testing. Your browser comes with a preloaded
set of accepted certificates. Since "Test CA" is unknown to the browser, it will
prompt the user to accept the connection. For a production installation, you
should generate your own server certificate and make it acceptable for the
browser, or apply for a server certificate at a certificate authority (CA) like
Verisign or Thawte. See the "SSL Reference" chapter for details.

Running NSSL as a Secure Telnet Proxy
NSSL is delivered with an example configuration file (SSLCONF), which
contains an SSL configuration for testing purposes. Using this configuration
file, you can start NSSL as a secure Telnet proxy by a single RUN command.

 Note: For a production installation, you should use your own server
certificate. Please refer to "Configuring SSL for production" in the "SSL
Reference" chapter for details.

To Start the NSSL Secure Telnet Proxy

1 Determine the Telnet server you want to install the secure proxy
for and find out the TCP/IP process and port number it is
listening on.

2 If the TELSERV process is running on TCP/IP process $ZTC0,
port 23
issue the following command at the command prompt:

RUN NSSL/NAME $STN0/ TELNETS; PORT 8423; CONFIG SSLCONF

otherwise start the proxy with a command such as:
RUN NSSL/NAME $STN03/ TELNETS; SUBNET $ZTC03; PORT 8423;
 TARGETPORT 1023; CONFIG SSLCONF

where

• the keyword "TELNETS" designates the NSSL run mode as
a secure telnet proxy.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. This should be the same process the
TELSERV process runs on. As shown above, you may omit
this parameter, in which case NSSL will assume $ZTC0 as
default.

• the parameter "PORT" reflects the port number NSSL should
listen on for secure Telnet connections.

• the parameter "TARGETPORT" reflects the port number of
the TELSERV process the connections should be routed to.
As shown above, you may omit this parameter, in which
case NSSL will assume the well known telnet port 23 as
default.

NSSL Server - NonStop SSL Server Installation • 31

• the parameter "CONFIG" refers to the configuration file
containing the example SSL configuration delivered with
NSSL.

3 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

 Note: By specifying an additional parameter "TARGETHOST" and /or
"TARGETSUBNET", you can also start a proxy on a TCP/IP process (or
even system) other than that where the TELSERV listens on. However for
security reasons, you should specify the "local loopback address" (127.0.0.1)
as TARGETHOST. A local loopback avoids that unencrypted data traverses
the network. In the above examples the TARGETHOST parameter has been
omitted, since it will default to "127.0.0.1".

To Create a Secure Connection with Any Secure Telnet
Client

Configure your SSL Telnet client to connect to the address and port number the
NSSL secure telnet proxy listens for incoming connections. Make sure that the client
has the SSL protocol enabled for the session.

To Create a Secure Telnet Connection with OutsideView

In the Session Settings dialog, I/O tab, select “Encrypt datastream using SSL” to
enable encryption. Additional options allow definition of server certificate handling and
cipher suites. Please refer to the documentation included with OutsideView for a full
description of these options.

Running NSSL as a Secure Client/Server Proxy

Running NSSL as a Secure RSC Proxy
NSSL is delivered with an example configuration file (SSLCONF), which
contains an SSL configuration for testing purposes. Using this configuration
file, you can start NSSL as a secure client/server by a single RUN command.
Remember: NSSL supports many connections as mentioned earlier. For the
following example we used RSC. In most cases the difference is only in the
Process which NSSL will transfer the data to.

 Note: For a production installation, you should use your own server
certificate. Please refer to "Configuring SSL for production" in the "SSL
Reference" chapter for details.

To Start the NSSL Secure RSC Proxy

32 • Installation NSSL Server - NonStop SSL Server

1 Determine the RSC Transaction Delivery Process (TDP) you
want to install the secure proxy for and find out the TCP/IP
process and port number it is listening on.

2 Assuming the TDP process is configured to running on TCP/IP
process $ZTC0 and to listen on incoming port 12001, run NSSL
as follows:

RUN NSSL/NAME $STN03/ PROXYS; SUBNET $ZTC03; PORT 8423;
 TARGETPORT 12001; CONFIG SSLCONF

where

• the keyword "PROXYS" designates the NSSL run mode as a
secure client/server proxy.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. This should be the same process the
TELSERV process runs on. As shown above, you may omit
this parameter, in which case NSSL will assume $ZTC0 as
default.

• the parameter "PORT" reflects the port number NSSL should
listen on for secure Telnet connections.

• the parameter "TARGETPORT" reflects the port number of
the TDP process the connections should be routed to.

• the parameter "CONFIG" refers to the configuration file
containing the example SSL configuration delivered with
NSSL.

3 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

 Note: By specifying an additional parameter "TARGETHOST" and / or
"TARGETSUBNET", you can also start a proxy on a TCP/IP process (or
even system) other than that where the TELSERV listens on. However for
security reasons, you should specify the "local loopback address" (127.0.0.1)
as TARGETHOST. A local loopback avoids that unencrypted data traverses
the network. In the above examples the TARGETHOST parameter has been
omitted, since it will default to "127.0.0.1".

Running NSSL as a Secure Attunity Proxy
NSSL is delivered with a set of sample certificate and key files required for
SSL. The default settings of the relevant SSL parameters point to these
sample files to allow an out-of-the-box installation for evaluation purposes.
Using the default settings, you can start NSSL as a secure Attunity Proxy by
a simple RUN command.

 Note: For a production installation, you should use your own server
certificate. Please refer to "Configuring SSL for production" in the "SSL
Reference" chapter for details.

To Start the NSSL Secure Attunity Proxy

NSSL Server - NonStop SSL Server Installation • 33

1 Check your Attunity configuration on the NonStop server, to
determine the Attunity server you want to install the secure proxy
for and find out the TCP/IP process and port number it is
listening on.

2 Assuming the Attunity server process is configured to running on
TCP/IP process $ZTC0 and to listen on incoming port 2551, run
NSSL as follows:

RUN NSSL/NAME $STN03/ ATTUNITYS; SUBNET $ZTC0; PORT 8551;
 TARGETPORT 2551

where

• the keyword "ATTUNITYS" designates the NSSL run mode
as a secure Attunity server proxy.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. This should be the same process the
Attunity server process runs on

• the parameter "PORT" reflects the port number NSSL should
listen on for secure Attunity connections from clients.

• the parameter "TARGETPORT" reflects the port number of
the Attunity server process the connections should be routed
to.

3 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

Running NSSL as a Secure FTP Proxy
NSSL is delivered with a set of sample certificate and key files required for
SSL. The default settings of the relevant SSL parameters point to these
sample files to allow an out-of-the-box installation for evaluation purposes.
Using the default settings, you can start NSSL as a secure FTP proxy by a
simple RUN command.

To Start the NSSL FTP Server Proxy

1 At the command prompt, issue the following command:
RUN NSSL/NAME $FTPS/ FTPS; SUBNET $ZTC0; PORT 8421

where

• the keyword "FTPS" designates the NSSL run mode as a
secure FTP proxy.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. You may omit this parameter, in which
case NSSL will assume $ZTC0 as default.

• the parameter "PORT" reflects the port number NSSL should
listen on for FTP connections. Note, that to start an NSSL
FTPS proxy server on a port number below 1024, SUPER
group rights will be required.

34 • Installation NSSL Server - NonStop SSL Server

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

To start the NSSL FTP Server Proxy with an Audit Log
1 Issue the following command at the command prompt:

RUN NSSL/NAME $FTPS/ FTPS; SUBNET $ZTC0; PORT 8421; AUDITFILE FTPAUDIT;
FTPALLOWPLAIN TRUE

where

• the keyword "FTPS", "SUBNET" and "PORT" reflects are
identical than in the previous example.

• the parameter "AUDITFILE" specifies that an audit file
containing commands from the remote FTP clients will be
created.

• the parameter "FTPALLOWPLAIN" set to true means that
FTP clients without encryption will be supported.

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

3 View the content of the file FTPAUDIT at any time to see the
remote commands issued against the server proxy. You can
view the content and dump it to an edit file using the SHOWLOG
utility described in this manual. You can also use OSS tools such
as grep or tail against the audit file.

To Start the NSSL FTP Client Proxy

1 Issue the following command at the command prompt:
RUN NSSL/NAME $FTPC/ FTPC; SUBNET $ZTC0, PORT 8021

where

• the keyword "FTPC" designates the NSSL run mode as a
secure FTP client proxy.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. This should be the same process
which you will use for the FTP client. You may omit this
parameter, in which case NSSL will assume $ZTC0 as
default.

• the parameter "PORT" reflects the port number NSSL should
listen on for connections from the NonStop FTP client.

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

To Start the NSSL FTP Client Proxy without Encryption

1 Issue the following command at the command prompt:

NSSL Server - NonStop SSL Server Installation • 35

RUN NSSL/NAME $FTPC/ FTPCPLAIN; SUBNET $ZTC0, PORT 8021, PASSIVE 1

where

• the keyword "FTPCPLAIN" designates the NSSL run mode
as a FTP client proxy without encryption.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. This should be the same process
which you will use for the FTP client. You may omit this
parameter, in which case NSSL will assume $ZTC0 as
default.

• the parameter "PORT" reflects the port number NSSL should
listen on for connections from the NonStop FTP client.

• the parameter "PASSIVE" indicated that passive mode
should be used for file transfer

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

Running NSSL as a Secure WebSphere MQ Proxy

To Start the NSSL Secure WebSphere MQ Proxy Process
for the Sending Channel

1 Determine the ip address or DNS name of the host on which the
remote WebSphere MQ system runs. This information can be
retrieved from the CONNAME parameter configured with the
sending channel of the local WebSphere MQ instance.

2 Find out the port number on which the remote WebSphere MQ
listens for it’s receiving channel. Usually this is the registered
port number 1414. See also the CONNAME param mentioned
above.

3 Given that the CONNAME parameter of the local sending
channel configuration is currently set to ip address 10.0.1.191
and port 1414 then the NSSL process is started using the
following command:

RUN NSSL MQC; PORT 11414 ; TARGETHOST 10.0.1.191; TARGETPORT 1414

where

• the keyword "MQC" designates the NSSL run mode as a
secure WebSphere MQ proxy forwarding local sending
channels to remote WebSphere MQ instances.

• the parameter "PORT" reflects the port number NSSL should
listen on for the connection from the local WebSphere MQ
sending channel.

36 • Installation NSSL Server - NonStop SSL Server

• the parameter "TARGETHOST" reflects the ip address of the
host (for example 10.0.1.191) on which the remote
WebSphere MQ runs.

• the parameter "TARGETPORT" reflects the port number on
which the remote WebSphere MQ listens on for it’s receiving
channel.

To Start the NSSL Secure WebSphere MQ Proxy Process
for the Receiving Channel

1 Determine the port number on which the local WebSphere MQ
listens for it’s receiving channel. This is usually the registered
port 1414.

2 The NSSL process is started using the following command:
RUN NSSL MQS; PORT 1414 ; TARGETHOST 127.0.0.1; TARGETPORT 21414

where

• the keyword "MQS" designates the NSSL run mode as a
secure WebSphere MQ proxy forwarding inbound receiving
channels to local WebSphere MQ instances.

• the parameter "PORT" reflects the port number NSSL should
listen on for inbound receiving channels.

• the parameter "TARGETHOST" reflects the ip address of the
local WebSphere MQ system. In this case it is assumed that
the NSSL process runs on the same host as the local
WebSphere MQ system. Therefore, the loop back address
127.0.0.1 is used.

• the parameter "TARGETPORT" reflects the port number on
which the local WebSphere MQ listens for it’s receiving
channel. Please note, that port 1414 is already occupied by
the NSSL as the listener port. Therefore, the local
WebSphere MQ must be configured to listen on some other
port, in our example on 21414.

Running NSSL as an SSL Tunnel for EXPAND-Over-IP
Lines

Starting NSSL
Creating an SSL tunnel for an EXPAND-over-IP line requires running an
NSSL process in EXPANDS mode for the line handler on both sides of the
connection. The configuration of the NSSL processes can be easily derived
from the existing line handler configuration of EXPAND-over-IP line. To
enable the tunneling, only a single line handler attribute needs to be
changed.

NSSL Server - NonStop SSL Server Installation • 37

The following steps explain how install an SSL tunnel process for an
EXPAND-over-IP line handler. Please note that these steps need to be
performed on both NonStop servers connected by the line.

To Start the NSSL EXPANDS Tunnel

1 For the EXPAND-over-IP line handler you want to secure,
determine the values of the following configuration attributes
using the SCF INFO LINE DETAIL command:

• ASSOCIATEDEV

• DESTIPADDR

• DESTIPPORT

• SRCIPADDR

• SRCIPPORT

2 Start the NSSL EXPANDS process as follows:
RUN NSSL EXPANDS; SUBNET <associatedev>;
 DESTIPADDR <destipaddr>; DESTIPPORT <destipport>;
 SRCIPADDR <srcipaddr>; SRCIPPORT <srcipport>

where you fill in the respective values you determined in step 1.

3 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

Note 1: For a production installation it is recommended to run NSSL
EXPANDS as a generic process sending log output to a file.
Note 2: An NSSL process has to be started on each system, please see the
diagram in "NSSL as a Proxy to Secure EXPAND Over IP Traffic” for details.

To Activate the SSL Tunnel for the EXPAND Line

1 Using SCF, alter the configuration of the EXPAND line as
follows:

> ASSUME LINE <line>
> ABORT
> ALTER, DESTIPADDR 127.0.0.1
> START

2 After the tunnel is properly configured on both sides, you should
see NSSL log messages similar to the following:

$EXPS |27Apr05 12:31:41.01|50|E1| tunnel connect succeeded, tunnel
ready

or
$EXPS |27Apr05 12:37:26.78|50|E1| accepted tunnel connection, tunnel
ready

The EXPAND line should then show the "READY" state.

Note: Again, that change in the SCF configuration has to be done on both
systems.

38 • Installation NSSL Server - NonStop SSL Server

Load Balancing and Fault-Tolerance of EXPAND
over SSL
Using the EXPAND multi-line or multi-CPU path feature, it is possible to
distribute the CPU load generated by the SSL encryption of the EXPAND
traffic across multiple CPUs. Having multiple EXPAND SSL lines connecting
systems will also provide fault-tolerance against CPU and other failures. If an
EXPAND line goes down due to an NSSL EXPANDS process terminating for
any reason, the traffic will be redirected over the remaining lines.

EXPAND Multi-Line versus Multi-CPU Paths
The choice between Multi-Line or Multi-CPU paths (SUPERPATH) is
influenced by the nature of the traffic between the systems, as well as the
load-balancing and fault-tolerance goals to be achieved.

Multi-Line and Multi-CPU paths over SSL differ in the following aspects:

• CPU consumption
Since Multi-CPU paths have a separate LH process for each line, the NSSL
processes can be configured to use the same CPU, reducing message-system
hops between CPUs for the Loopback communication. Measurements have
shown a lower CPU consumption of about 250ms/MB transferred data on an
S72000 system.

• Load-balancing
Multi-CPU path will assign a particular line to any pair of communicating
processes. Hence, if a single pair of communicating process is generating a high
traffic load, such as a FUP DUP or an RDF Extractor/Replicator, this traffic will
burden a single CPU.
Multi-Line paths will distribute traffic evenly across all available lines,
independently of the number and CPUs of the processes commicating over
EXPAND. Load will also be re-distributed dynamically and transparently, if a CPU
of an NSSL EXPANDS process is heavily loaded by processes with a higher
priority. Hence, bandwidth can be preserved, even if the NSSL processes run at a
low priority to avoid impact on critical application processes.

• Fault-Tolerance
With Multi-CPU paths a single line is assigned to a communication link between a
requestor and a server. If this line goes down, a communication error will be
reported to the requestor, and the communication link will have to be re-
established.
A failure of a single with a Multi-line path will be completely transparent to the
application and the traffic will be re-routed automatically.

• Throughput
The highest maximum thougput can be achieved with Multi-CPU paths.
Measurements showed a throughput of up to 1-5 MB/s per CPU for FESA/100Mbit
connected systems, with a linear scalability for multiple requestor/server pairs
running in different CPUs (e.g. 6MB/s 1with 4 pairs).
Multi-line paths have a lesser maximum throughput, as all traffic is handled by a
single LH process. Measurements have shown a throughput of 1-4 MB/s for
FESA/100Mbit connected systems with a single requestor server pair and a total
maximum throughput of about 3 MB/s with multiple pairs.

NSSL Server - NonStop SSL Server Installation • 39

Optimizing Throughput
The following configuration properties & setup can impact the overall
throughput over an EXPAND over SSL path:

• LIF DataForwardCount (DFC) and DataForwardTime (DFT)

Reducing the values DFC and DFT can increase the throughput for
an EXPAND over SSL line. On S86000 or NS systems, DFC can be
set to 1, reducing response time to a minimum. On slower systems,
DFT/DFC should be set to the smallest possible value (e.g.
DFT=1ms, DFC=10)

• CPU selection of NSSL EXPANDS processes with multi-line paths

Starting an NSSL EXPANDS line process in primary CPU of a
EXPAND line handler process handling multi-line path can severely
decrease the overall throughput. For an optimal performance even in
case of a takeover of the lime handler backup, it is recommended to
run the NSSL EXPANDS processes in CPUs not used by the LH
process.

Multi-Line Path Installation Sample
The following sample configuration illustrates how to optimize throughput,
distribute CPU load and achieve fault-tolerance.

Assumptions
• \SYSA and \SYSB to be connected over EXPAND SSL

• Systems have 8 CPUs each

• TCPIPv6

Configuration
The following figure shows a complete setup:

40 • Installation NSSL Server - NonStop SSL Server

\SYSB

\SYSA
CPU 0

SWAP

CPU 1

SWAP

CPU 2

SWAP

CPU 3

LH
Primary

CPU 4

LH
Backup

CPU 5

SWAP

CPU 6

SWAP

CPU 7

SWAP

TCPIPV6 #LOOP0

TCPIPV6 #SN1

CPU 0

SWAP

CPU 1

SWAP

CPU 2

SWAP

CPU 3

LH
Primary

CPU 4

LH
Backup

CPU 5

SWAP

CPU 6

SWAP

CPU 7

SWAP

TCPIPV6 #SN1

TCPIPV6 #LOOP0

Port 1200 Port 1201 Port 1202 Port 1205 Port 1206 Port 1207

The following steps have been performed for the above setup:

1 An Expand Multi-Line path was created on each system

• 2 CPUs were selected for the LH primary and backup

• To distribute SSL CPU load over the remaining CPUs, 6
lines were created for the path

• A unique port number was selected for each line (SRCPORT
and DESTPORT can be identical)

• DESTIPADDR of all lines was set to the loopback address
(127.0.0.1)

2 6 NSSL EXPANDS persistent processes were created on both
systems 0

• A different CPU was selected for each SSL process

• The SSL tunnel was associated to the line using the same
SRCPORT and DESTPORT parameters as in the line
configuration.

• The DESTIPADDR parameter of the NSSL EXPANDS
processes were set to the remote system's IP address.

NSSL Server - NonStop SSL Server Installation • 41

Running NSSL as an SSL Tunnel for ODBC/MX
Connections

Note: The configuration of NSSL for ODBC/MX differs from the configuration
for ODBC/MP. This section describes the configuration of NSSL for
ODBC/MX, please see the section "NSSL as a Secure Proxy for Generic
TCP/IP Client Server Applications" for the configuration of NSSL for
ODBC/MP.

To encrypt ODBC/MX traffic, NSSL needs to be configured in conjunction
with the RemoteProxy component running on the workstation where the
ODBC/MX client resides. Please see the NSSL Quickstart guide for a
detailed description on how to set up the RemoteProxy component for
ODBC/MX traffic.

Note: For a production installation, you should use your own server
certificate. Please refer to "Configuring SSL for production" in the "SSL
Reference" chapter for details.

To Start the NSSL Secure ODBC/MX Proxy

1 Run NSSL as follows:
RUN NSSL/NAME $SODBC/ ODBCMXS; SUBNET $ZTC03; PORT 8888; CONFIG SSLCONF

where

• the keyword "ODBCMXS" designates the NSSL run mode as
a secure ODBC/MX proxy.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. This should be the same process the
MXAOAS process runs on.

• the parameter "PORT" reflects the port number NSSL should
listen on for secure incoming connections.

• you must not specify a value for TARGETPORT.

• the parameter "CONFIG" refers to the configuration file
containing the example SSL configuration delivered with
NSSL.

2 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

 Note: By specifying an additional parameter "TARGETHOST" and / or
"TARGETSUBNET", you can also start a proxy on a TCP/IP process (or
even system) other than that where the TELSERV listens on. However for
security reasons, you should specify the "local loopback address" (127.0.0.1)
as TARGETHOST. A local loopback avoids that unencrypted data traverses
the network. In the above examples the TARGETHOST parameter has been
omitted, since it will default to "127.0.0.1".

42 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Configuring and Running NSSL

Configuration Overview
NSSL processes can be flexibly configured by a set of configuration
parameters which can be specified by the following means:

• A configuration file

• PARAM commands

• Startup command line parameters

The different options to specify a configuration for NSSL allow system
administrators to easily manage installations with multiple NSSL processes
running on multiple TCP/IP processes and ports as well as in different
modes. For example, multiple NSSL secure proxy processes with a an
identical SSL configuration can share the same configuration file, while
process-unique parameters such as proxy port, target host and port can be
specified on the command line.

On startup, NSSL parses the given configuration parameters sources. A
single parameter may be specified in multiple sources, e.g. in the
configuration file and on the startup command line. In this case, NSSL will
process parameters with the following precedence (highest to lowest):

1 PARAM parameter

2 Configuration file parameter

3 Startup line parameter

This means that parameter given in the configuration file will override the
value given for the same parameter on the startup line. Likewise, a
parameter value given as PARAM command will override any value specified
in the configuration file.

All NSSL parameters can be specified in any of the configuration parameter
sources, with the following exceptions:

• the run mode of an NSSL process is specified explicitly on the command line as
first startup line parameter. This parameter defines if NSSL acts as a HTTP (web)
server, a HTTPS (secure web) server and so forth for all supported modes (see
"Starting NSSL" for a complete list).

• the configuration file to be used as a parameter source can only be specified as a
PARAM or startup line parameter, as it is meaningless in a configuration file itself.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 43

Regardless which way they are specified, parameter names are case
insensitive.

The Configuration File
The configuration file is an edit type file which can be adapted with a
standard NonStop editor such as TEDIT. The name of the file that an NSSL
process should use as configuration source is passed to the program during
startup (see "Starting NSSL" for details).

The file contains entries of the form
 parameter-name parameter-value

Like in the standard TCP/IP configuration files, any lines starting with a "#"
character are interpreted as comments. The following printout is the contents
of the sample configuration file for running NSSL as a secure web server:

44 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

sample configuration file for an NSSL secure web server

#--

general settings

TCP/IP process the web server runs on
SUBNET $ZTC0

HTTPS server port where NSSL listens for incoming SSL browser
connections
we use the well known HTTPS port (requires SUPER access to start
NSSL)
PORT 443

subvolume the web server returns requested resources from
HTTPBASE $DATA1.COMFHTML
we also use a zip archive filled with HTTP contents
HTTPZIP $DATA1.NSSL.HTTPZIP

#--

log configuration
set the level
LOGLEVEL 50
enable console logging to $0
LOGCONSOLE $0
additionally log to file
LOGFILE $DATA1.NSSL.HTTPSLOG

#--

SSL configuration
our server certificate and private key
SERVCERT $DATA1.COMFNSSL.MYCERT
SERVKEY $DATA1.COMFNSSL.PRIVKEY
SERVKEYPASS myprivatepassword
our server cert was issued by verisign
CACERTS $DATA1.COMFNSSL.VERISIGN
we only accept the strongest cipher suite with 3DES
CIPHERSIUTES 0.10

PARAM Commands
NSSL configuration parameters can be specified as PARAM commands as
follows:

PARAM <parameter name> <parameter value>

All available NSSL parameters can be specified as PARAM commands.

The following example demonstrates how to start an NSSL plain HTTP
server listening on $ZTC03, port 8080, using PARAM commands:

> PARAM PORT 8080
> PARAM SUBNET $ZTC03
> PARAM HTTPBASE COMFHTML
> RUN NSSL/ NAME $HTTP, NOWAIT/ HTTP

Startup Line Parameters
NSSL configuration parameters can be passed on the startup line as follows
(for a complete description of the RUN NSSL command see section "Starting
NSSL"):

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 45

<parameter name> <parameter value>; <parameter name> <parameter value>; ...

The following example demonstrates how to start a multiple NSSL secure
proxies sharing the same SSLCONF configuration file:

> PARAM CONFIG SSLCONF
> RUN NSSL /NAME $STN0, CPU 0, NOWAIT/ TELNETS; SUBNET $ZTC0; PORT 8023
> RUN NSSL /NAME $STN1, CPU 1, NOWAIT/ TELNETS; SUBNET $ZTC1; PORT 8023
> RUN NSSL /NAME $STN2, CPU 2, NOWAIT/ TELNETS; SUBNET $ZTC2; PORT 8023
> RUN NSSL /NAME $STN3, CPU 3, NOWAIT/ TELNETS; SUBNET $ZTC3; PORT 8023

Starting NSSL
You create an NSSL process by issuing a TACL RUN command using the
following syntax:

RUN NSSL / runoptions / mode [; paramname paramvalue; ...]

where

• runoptions are the standard Guardian RUN options, such as IN, CPU or TERM

• mode defines the run mode of the NSSL process with the following valid
keywords:

FTPC FTP client proxy

FTPS FTP server proxy

FTPCPLAIN FTP client proxy without encryption

HTTP HTTP server

HTTPS Secure HTTP server

PROXYS Generic SSL server proxy

PROXYC Generic SSL client proxy

TELNETS Secure Telnet proxy

ATTUNITYS Secure Attunity proxy

MQS Secure WebSphere MQ server
proxy

MQC Secure WebSphere MQ client proxy

EXPANDS Secure EXPAND over IP proxy

ODBCMXS Secure Proxy for ODBC/MX

• paramname paramvalue; ...
is a list of NSSL configuration parameter settings as described in the previous
section.

 Note: When you start NSSL in NOWAIT mode, make sure you have
disabled logging to the home terminal. To do so, set the following PARAM:
PARAM LOGCONSOLE *

46 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Security Considerations
While SSL is a very powerful and flexible protocol to encrypt TCP/IP traffic, it
has to be used properly to be protected against some common attacks. The
two most important factors in making an SSL installation fully secure are:

• protecting against the man-in-the middle attack through proper usage of
certificates

• protecting the private key file

 Note: Ignoring those two factors will result in a system open to well-known
attacks. Please read this section and follow the recommendations to make
sure you are deploying SSL properly.

Protecting Against the Man-in-the-Middle Attack
The man-in-the-middle attack is based on a weakness of the TCP/IP protocol
which allows adding an "intermediary" between two systems communicating
via TCP/IP.

To protect against that kind of attack, SSL uses certificates. See the following
sections of this manual for more information:

• Chapter SSL Reference, section X.509 Certificates

• Chapter SSL Reference, section Configuring SSL for Production

Make sure to generate your own certificates for production and to configure
all your SSL clients to verify the certificates used by the SSL server.

Protecting the Private Key File
If an attacker gets access to the private key file, he can attack the SSL
protocol in various ways. Therefore it is important that you protect the private
key file residing on your NonStop system.

The private key file is created during the generation of your certificates and is
a file in your Guardian file system. The location of the file is configured using
the parameter SERVKEY. Standard procedures (such as Safeguard ACL's)
should be employed so that only the NSSL process can open that file.

The private key file is encrypted using a so-called pass phrase. An attacker
needs both the private key file and the pass phrase for a successful attack.
The pass phrase is configured through the SERVKEYPASS parameter, that
parameter is probably present in some startup file or macro. This startup file
needs again to be protected properly.

 Note: Never send the private key file and/or the pass phrase to anybody via
e-mail. Make sure the file resides only on your NonStop system and is
properly protected via Safeguard.

If the Private Key Is Compromised
If you have reason to believe that your server private key file has been
compromised, you should immediately install a new server certificate along

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 47

with a private key file encrypted with a different pass phrase. Using the
Certificate Tools, you should generate a new Certificate Signing Request
(CSR). If you obtained the server certificate from a third party or corporate
CA, you should then send the CSR to the CA. If you are acting as your own
CA, you should use your CA certificate and private key to issue a new server
certificate.

 Note: If you authenticate the NSSL server in your clients, you should
consider to base trust on the Root CA certificate (e.g. check the Root CA
fingerprint). In case the server certificate is compromised you can simply
replace it without having to update your client configuration.

NSSL Parameter Reference
This section describes all available NSSL parameters in alphabetical order.
Note, that parameter names are case insensitive independently of the
source.

Parameter Overview
The following table lists all available NSSL parameters and their meanings:

Parameter Meaning

ALLOWCERTERRORS allows selective overriding of certificate validation errors.

ALLOWIP limits allowed remote IP addresses.

AUDITASCIIONLY
AUDITASCIIDUMPLENIN
AUDITASCIIDUMPLENOUT
AUDITCONSOLE
AUDITLEVEL
AUDITFILE
AUDITFILERETENTION
AUDITFORMAT
AUDITMAXFILELENGTH

control the creation of an audit file containing the remote FTP
commands in run mode FTPS or the socket activities in run
modes PROXYS,PROXYC,PROXY,MQS,MQC,ODBCMXS.

CACERTS file names of a DER encoded X.509 CA certificates
representing a certificate chain signing the certificate configured
with the CLIENTCERT or SERVCERT parameter.

CIPHERSUITES list of cipher suites that will be accepted by a secure NSSL
process

CLIENTAUTH Enforced client authentication when running as SSL server: a
certificate signing the certificates the client is using for SSL
client authentication.
[That parameter was called TRUST in versions prior to 1043,
for details see "Trust". (NSSL Parameter Reference)]

CLIENTCERT file name of a DER encoded X.509 client certificate.

CLIENTKEY the private key to be used for the client certificate.

CLIENTKEYPASS password for reading the (encrypted) private key file.

CONFIG file name of an NSSL configuration file.

48 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Parameter Meaning

CONFIG2 allows the usage of a second configuration file with different
security settings

CONTENTFILTER Activates content-filtering in run modes PROXY, PROXYS and
PROXYC

DENYIP limits allowed remote IP addresses.

DONOTWARNONERROR log selected errors with LOGLEVEL 20 rather than as
WARNING

FTPALLOWPLAIN allows plain FTP traffic when NSSL is run in FTPS mode

FTPCALLOW200REPLY sets compatibility for older FTP/TLS servers when run in FTPC
mode

FTPLOCALDATAPORT controls the value of the local port on the NonStop system of
the data connection in FTPC mode with PASSIVE set to TRUE.

FTPMAXPORT the maximum port number NSSL will use for FTP data
connections.

FTPMINPORT the minimum port number NSSL will use for FTP data
connections.

HTTPBASE the location (subvolume) an NSSL HTTP server returns
requested resources from.

HTTPZIP specifies a ZIP file an NSSL HTTP server should return
requested resources from.

INTERFACE controls the IP address NSSL will bind to for connections made
to NSSL.

KEEPALIVE specifies if keep alive messages are sent to TCP/IP sockets.

LICENSE the location for the license file of NSSL.

LOGCONSOLE determines if log messages are written to a console.

LOGEMS determines if log messages are written to EMS.

LOGFILE determines if log messages are written to a file.

LOGFILERETENTION controls the number of log files kept after rollover occurs

LOGFORMAT controls the format of the log messages that are written to the
console or log file.

LOGFORMATCONSOLE controls the format of the log messages that are written to the
console.

LOGFORMATEMS controls the format of the log messages that are written to EMS.

LOGFORMATFILE controls the format of the log messages that are written to a log
file.

LOGLEVEL determines which messages will be written the log file.

LOGLEVELCONSOLE allows to set different log level for LOGCONSOLE output

LOGLEVELEMS allows to set different log level for LOGEMS output

LOGLEVELFILE allows to set different log level for LOGFILE output

LOGMEMORY Allows regular logging of NSSL’s memory usage to the log
output

LOGMAXFILELENGTH controls the maximum size of the log file.

MAXSESSIONS Limits the number of parallel connections in run modes
PROXYS, PROXYC, PROXY, TELNETS

MAXVERSION maximum admissible SSL/TLS protocol version.

MINVERSION minimum admissible SSL/TLS protocol version.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 49

Parameter Meaning

PASSIVE sets direction of control socket connection in FTPC mode.

PEERCERTCOMMONNAME for verification of remote certificates.

PEERCERTFINGERPRINT for verification of remote certificates.

PORT the port the NSSL server listens on for incoming connections.

PTCPIPFILTERKEY Sets the filter key to enable round robin filtering

SERVCERT file name of a DER encoded X.509 server certificate.

SERVKEY the private key to be used for the server certificate.

SERVKEYPASS password for reading the (encrypted) private key file.

SLOWDOWN adds delay to processing resulting in slower
encryption/decryption with less CPU usage

SOCKSHOST
SOCKSPORT
SOCKSUSER

Configures NSSL as SOCKS Version 4 client in run modes
FTPC, FTPCPLAIN, PROXY or PROXYC

SUBNET the name of the TCP/IP process NSSL should listen on for
connections.

SWAPCOMSECURITY restricts execution of NSSLCOM commands.

TARGETHOST the IP address an NSSL proxy should route connections to.

TARGETINTERFACE controls the IP address NSSL binds to for outgoing
connections.

TARGETPORT the port number an NSSL proxy should route connections to.

TARGETSUBNET the name of the TCP/IP process NSSL should use for outgoing
connections.

TCPIPHOSTFILE Sets the DEFINE = TCPIP^HOST^FILE

TCPIPNODEFILE Sets the DEFINE = TCPIP^NODE^FILE

TCPIPRESOLVERNAME Sets the DEFINE = TCPIP^RESOLVER^NAME

TCPNODELAY Activates RFC1323 on all sockets

TRUST when running as SSL client: list of fingerprints of trusted CA or
server certificates.
[In versions prior to 1043 that parameter enforced SSL client
authentication; this is now done with the new parameter
CLIENTAUTH. For details see "CLIENTAUTH" in the "NSSL
Parameter Reference”.]

ALLOWCERTERRORS
Use this parameter to allow selective overriding of certificate validation
errors.

Parameter Syntax
ALLOWCERTERROS number1 [, number2, ...]

Arguments
 number

comma-separated lists of certificate errors which NSSL should ignore. The error
numbers are defined in the openssl sources uses for NSSL (see Considerations).

50 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Considerations

• Note: the usage of this parameter may compromise the security of your
configuration. Use only as workaround and with care.

• The paramter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

The following table lists error numbers and names as defined in the openssl
sources:

Error Name Error number

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT 2

X509_V_ERR_UNABLE_TO_GET_CRL 3

X509_V_ERR_UNABLE_TO_DECRYPT_CERT_SIGNATURE 4

X509_V_ERR_UNABLE_TO_DECRYPT_CRL_SIGNATURE 5

X509_V_ERR_UNABLE_TO_DECODE_ISSUER_PUBLIC_KEY 6

X509_V_ERR_CERT_SIGNATURE_FAILURE 7

X509_V_ERR_CRL_SIGNATURE_FAILURE 8

X509_V_ERR_CERT_NOT_YET_VALID 9

X509_V_ERR_CERT_HAS_EXPIRED 10

X509_V_ERR_CRL_NOT_YET_VALID 11

X509_V_ERR_CRL_HAS_EXPIRED 12

X509_V_ERR_ERROR_IN_CERT_NOT_BEFORE_FIELD 13

X509_V_ERR_ERROR_IN_CERT_NOT_AFTER_FIELD 14

X509_V_ERR_ERROR_IN_CRL_LAST_UPDATE_FIELD 15

X509_V_ERR_ERROR_IN_CRL_NEXT_UPDATE_FIELD 16

X509_V_ERR_OUT_OF_MEM 17

X509_V_ERR_DEPTH_ZERO_SELF_SIGNED_CERT 18

X509_V_ERR_SELF_SIGNED_CERT_IN_CHAIN 19

X509_V_ERR_UNABLE_TO_GET_ISSUER_CERT_LOCALLY 20

X509_V_ERR_UNABLE_TO_VERIFY_LEAF_SIGNATURE 21

X509_V_ERR_CERT_CHAIN_TOO_LONG 22

X509_V_ERR_CERT_REVOKED 23

X509_V_ERR_INVALID_CA 24

X509_V_ERR_PATH_LENGTH_EXCEEDED 25

X509_V_ERR_INVALID_PURPOSE 26

X509_V_ERR_CERT_UNTRUSTED 27

X509_V_ERR_CERT_REJECTED 28

X509_V_ERR_SUBJECT_ISSUER_MISMATCH 29

X509_V_ERR_AKID_SKID_MISMATCH 30

X509_V_ERR_AKID_ISSUER_SERIAL_MISMATCH 31

X509_V_ERR_KEYUSAGE_NO_CERTSIGN 32

X509_V_ERR_UNABLE_TO_GET_CRL_ISSUER 33

X509_V_ERR_UNHANDLED_CRITICAL_EXTENSION 34

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 51

Error Name Error number

X509_V_ERR_KEYUSAGE_NO_CRL_SIGN 35

X509_V_ERR_UNHANDLED_CRITICAL_CRL_EXTENSION 36

X509_V_ERR_APPLICATION_VERIFICATION 50

Default
If omitted, NSSL will work normally (all certificate validation errors are treated
as such and connection attempts will fail)

Example
ALLOWCERTERRORS 10

This will temporarily allow expired certificates.

ALLOWIP
Use this parameter to specify which remote IP addresses are to be allowed
to establish sessions ("white list").

Parameter Syntax
ALLOWIP range

Arguments
 range

specifies a set of valid remote IP addresses. Valid values are

o * for all IP addresses

o single IP addresses such as 10.1.1.11

o a subnet such as 10.1.1.*

o comma-separated lists of single IP addresses and subnets

Considerations

• See section "Using NSSL to limit the remote IP addresses" for the concept of
remote IP filtering.

• The parameter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

• The parameter can be preceded by a single character modifying the directions in
which the filter is applied:

o none or B: both directions (default)

o A: only applied to accepting socket

o C: only applied to connecting socket

Default
If omitted, NSSL will use * to allow all remote IP addresses

52 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Example
ALLOWIP 10.0.1.*, 10.0.2.*

AUDITASCIIONLY

Use this parameter to define how NSSL writes raw data to the audit log.

Parameter Syntax
AUDITASCIIONLY TRUE | FALSE

Arguments
 TRUE

Data will be dumped in ASCII format, binary values will be represented as <hh>
where hh is the hex representation

 FALSE

Data will be dumped as full hex dump. This consumes a lot of resources but provides
the most complete view

Default
By default, a value of TRUE will be used

Considerations
Audit messages will depend on the run mode – see parameter AUDITLEVEL for

details

See also parameters AUDITASCIIDUMPLENIN and AUDITASCIIDUMPLENOUT

AUDITASCIIDUMPLENIN

Use this parameter to define how many bytes of incoming messages are
written to the audit log when AUDITASCIIONLY is set to TRUE.

Parameter Syntax
AUDITASCIIDUMPLENIN number

Arguments
-1

means that each incoming message will be dumped fully
N

means that only the first N bytes of each incoming message will be dumped

Default
By default, a value of -1 will be used

Considerations
See parameter AUDITASCIIONLY

AUDITASCIIDUMPLENOUT

Use this parameter to define how many bytes of outgoing messages are
written to the audit log when AUDITASCIIONLY is set to TRUE.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 53

Parameter Syntax
AUDITASCIIDUMPLENIN number

Arguments
-1

means that each outgoing message will be dumped fully
N

means that only the first N bytes of each outgoing message will be dumped

Default
By default, a value of -1 will be used

Considerations
See parameter AUDITASCIIONLY

AUDITCONSOLE
Use this parameter to define if and to what console device NSSL audit
messages are written to.

Parameter Syntax
AUDITCONSOLE * | % | $0 | auditdevice

Arguments
*

means that no audit messages are written to a console
%

means that audit messages are written to the home terminal of the NSSL process
$0

audit messages are written to $0
 auditdevice

audit messages are written the given device (e.g. $DEV.#SUBDEV)

Considerations

• Audit messages will depend on the run mode – see parameter AUDITLEVEL for
details.

Default
By default, audit messages will be not be written to a device ("*")

See also:
AUDITFILE, AUDITLEVEL, AUDITFORMAT

AUDITFILE
Use this parameter to define if and to what file NSSL audit messages are
written to.

Parameter Syntax

54 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

AUDITFILE * | file

Arguments
*

means that audit messages are written to a file
 file

the name of the auditfile

Default
By default, no audit messages are written to a file ("*")

Considerations

• Audit messages will depend on the run mode – see parameter AUDITLEVEL for
details

See also:
AUDITCONSOLE, AUDITLEVEL, AUDITFORMAT

AUDITFILERETENTION
Use this parameter to control how many audit files NSSL keeps when audit
file rollover occurs.

Parameter Syntax
AUDITFILERETENTION n

Arguments
n

number of audit files to keep

Default
By default, 10 files are kept.

Considerations

• a minimum of 10 is enforced for that parameter

• See section “Logfile/Auditfile rollover using round robin” for details on logfile
rollover.

See also:
AUDITMAXFILELENGTH, AUDITFILE

AUDITFORMAT
Use this parameter to control the format of audit messages that are written to
the console or audit file.

Parameter Syntax
AUDITFORMAT format

Arguments
 format

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 55

a number representing a bit mask controlling the format options. Please see
parameter LOGFORMAT for the bit mask.

Default
The default log format is 93 (date, time, milliseconds, process ID and log
level)

Example
Display date, time, milliseconds only:

AUDITFORMAT 13

Display date, time only:
AUDITFORMAT 5

Considerations

• Audit messages will depend on the run mode – see parameter AUDITLEVEL for
details

See also:
AUDITCONSOLE, AUDITFILE, AUDITLEVEL

AUDITLEVEL
Use this parameter to control what audit messages are written to the audit
console or file.

Parameter Syntax
AUDITLEVEL detail

Arguments
 detail

a number representing the detail level

Default
The default audit level is 50

Considerations

Considerations

• Audit messages are written only for the following run modes:
PROXYS,PROXYC,PROXY,MQS,MQC,ODBCMXS, FTPS.

• The following table describes how to set AUDITLEVEL for the various run modes.

Audit
Level

Run Modes
PROXYS,PROXYC,PROXY,MQS,MQC,O
DBCMXS

Run Mode FTPS

10 Startup of NSSL Startup of NSSL

30 Logon of user

50 Network events (connect, disconnect) FTP operations

60 Network events
(connect, disconnect)

56 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

80 Data flowing through NSSL: byte count only

90 Data flowing through NSSL: full byte dump
(see parameter AUDITASCIIONLY for details)

• For PROXYS,PROXYC,PROXY,MQS,MQC,ODBCMXS we recommend 50 for
basic auditing and 99 for extended auditing including full traffic log.

Note: If set to 99, all data flowing through the network is dumped to the audit
log. This could include confidential data or passwords so make sure to
properly secure the audit log files.

• For FTPS mode, we recommend 50 for normal auditing

See also:
AUDITCONSOLE, AUDITFILE, AUDITFORMAT

AUDITMAXFILELENGTH
Use this parameter to control the maximum size of the audit file.

Parameter Syntax
AUDITMAXFILELENGTH length

Arguments
 length

a number representing the maximum audit file length in kilobytes.

Max. 40.000 or 40 MB

Min 100

Default
The default length is 20 000 KB.

Considerations

• After the current audit file reaches the maximum size a log rollover will occur. The
current audit file will be renamed by replacing the last character with a "2". A new
file with the AUDITFILE name will be created for subsequent audit output.

See also:
AUDITFILE, AUDITLEVEL

CACERTS
Use this parameter to specify a certificate chain validating the server or client
certificate given by the SERVCERT or CLIENTCERT parameter.

Parameter Syntax
CACERTS file1 [, file2, ...]

Arguments
 file1, file2, ...

the designated files are DER encoded X.509 CA certificates.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 57

Default
If omitted, NSSL will search for a single "CACERT" file on the default
subvolume.

Example
CACERTS $DATA1.NSSL.MYCA

Considerations

• The first file on the list must contain a certificate signing the given server
certificate. Subsequent files must contain certificates that sign the previous
certificate in the list.

• During SSL handshake, the certificate chain will be sent along with the client or
server certificate to the SSL communication partner

• If a value of * is used for CACERTS, it will be assumed that the client or server
certificate is self-signed.

• A CA certificate for testing purposes is delivered as CACERT file on the NSSL
installation subvolume to enable quick start installation. This test CA certificate
signs the test server certificate contained in SERVCERT or CLIENTCERT.

See also:
SERVCERT, CLIENTCERT

CIPHERSUITES
Use this parameter to specify which cipher suites are admissible for an NSSL
secure server.

Parameter Syntax
CIPHERSUITES suite [, suite, ...]

Arguments
 suite

specifies a cipher suite. Currently the following cipher suites are supported by NSSL:

o 0.1: RSA-key-exchange + NO ENCRYPTION and MD5 hash

o 0.2: RSA-key-exchange + NO ENCRYPTION and SHA1
hash

o 0.4: RSA-key-exchange + RC4-128-bit encryption and MD5
(RC4-MD5)

o 0.5: RSA-key-exchange + RC4-128-bit encryption and SHA
(RC4-SHA)

o 0.10: RSA-key-exchange + 3-DES encryption and SHA
(DES-CBC3-SHA)

o 0.47: RSA-key-exchange + 128-bit AES encryption and SHA
(AES128-SHA)

o 0.55: RSA-key-exchange + 256-bit AES encryption and SHA
(AES256-SHA)

Default

58 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

If omitted, NSSL will use 0.4, 0.10, 0.5 as accepted cipher suites.

Considerations

• During the SSL handshake the SSL client will send a list of cipher suites that it
supports. If you allow multiple cipher suites, NSSL will select the first one from the
list that matches a browser-supported cipher suite.

Example
CIPHERSUITES 0.5, 0.10

Note: The cipher suites 0.1 and 0.2 will NOT encrypt the traffic, they will only
authenticate the partners and provide message integrity checking. Please
only use if encryption is not required.

CLIENTAUTH
Use this parameter to enforce SSL client authentication when running as
SSL server. The CLIENTAUTH parameter specifies a file (or a set of files)
containing certificates. The certificate(s) will be sent to the client during
connection setup. The client will reply with its own client certificate which
needs to be signed by one of the certificates configured with the
CLIENTAUTH parameter.

Parameter Syntax
CLIENTAUTH file1 [, file2, ...]

Arguments
 file1, file2, ...

DER encoded X.509 CA certificate(s) which sign the certificate to be sent by the SSL
client to NSSL. If the SSL client cannot send such a certificate, connections setup will
fail.

'*'

No certificate request will be sent to the client

Default
If omitted, '*' is used and NSSL will not enforce SSL client authentication
when running as SSL server.

Example
CLIENTAUTH $DATA1.NSSL.CACERT

Note: Prior to NSSL version 1043, that parameter was called TRUST. For
downward compatibility, NSSL will copy the value of the TRUST parameter
into the CLIENTAUTH parameter when running as SSL server.

CLIENTCERT
Use this parameter to specify the client certificate a secure NSSL server
should use to authenticate itself to an SSL server.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 59

Parameter Syntax
CLIENTCERT file

Arguments
 file

Guardian file name of a DER encoded X.509 client certificate.

Default
If omitted or set to *, NSSL will not authenticate itself to the SSL server.

Example
CLIENTCERT $DATA1.NSSL.CLNTCERT

Considerations

• This parameter only applies to the run modes PROXYC and MQC, it will be
ignored in other run modes

• A client certificate for testing purposes is delivered as CLNTCERT file on the
NSSL installation subvolume to enable quick start installation.

• As NSSL indirectly supports BASE64 encoded certificates (after conversion to
DER format using Crystal Point's certificate tools, see chapter "The Certificate
Tools" in chapter "SSL Reference"), any client certificates received by a CA such
as Verisign or Thawte can be used with with NSSL.

• The client certificate must match the private key file specified by CLIENTKEY.

See also
• "To have NSSL send a certificate to the SSL server" in chapter "SSL Reference".

• CLIENTKEY, CLIENTKEYPASS

CLIENTKEY
Use this parameter to specify the file containing the private key associated
with the public key contained in the client certificate (CLIENTCERT).

Parameter Syntax
CLIENTKEY file

Arguments
 file

file name of a DER encoded PKCS-8 encrypted private key file with PKCS-5
algorithm identifiers.

Default
If omitted, NSSL will search for a "CLIENTKEY" file on the default
subvolume.

Example
CLIENTKEY $DATA1.NSSL.MYKEY

Considerations

60 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

• This parameter only applies to the run modes PROXYC and MQC, it will be
ignored in other run modes

• The private key data in the file is password encrypted. For NSSL to be able to
decrypt the file, the correct password must be specified by the CLIENTKEYPASS
parameter.

• A private key file for testing purposes is delivered as "CLNTKEY" file on the NSSL
installation subvolume to enable quick start installation. This private key file
matches the test client certificate delivered as "CLNTCERT". The password for the
CLNTKEY file is "test".

See also
CLIENTCERT, CLIENTKEYPASS

CLIENTKEYPASS
Use this parameter to specify the password for the file containing the private
key associated with the public key given in the client certificate (see param
CLIENTCERT).

Parameter Syntax
CLIENTKEYPASS password

Arguments
 password

the password or pass phrase to decrypt the private key file. The password string may
contain spaces. However, leading or trailing spaces will be ignored.

Default
If omitted, NSSL will try "test" as password.

Example
CLIENTKEYPASS my private passphrase

Considerations

• This parameter only applies to the run modes PROXYC and MQC, it will be
ignored in other run modes

• The default password ("test") enables quickstart installation with the "CLIENTKEY"
public key file delivered with NSSL.

See also
CLIENTCERT, CLIENTKEY

CONFIG
Use this parameter to specify a configuration file for an NSSL process.

Parameter Syntax
CONFIG file

Arguments
 file

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 61

the name of the configuration file.

Default
If omitted, NSSL will not use a configuration file.

Example
CONFIG $DATA1.NSSL.SSLCONF

Considerations

• This parameter can only be specified as PARAM or on the startup line. It is not
valid within a configuration file.

• Parameters specified in the configuration file can be overwritten by PARAM or
startup line settings.

CONFIG2
Use this parameter to specify a second configuration file for an NSSL
process.

Parameter Syntax
CONFIG2 file2

Arguments
 file2

the name of the second configuration file.

Default
If omitted, NSSL will not use a second configuration file.

Example
CONFIG2 $DATA1.NSSL.SSLCONF2

Considerations

• Having a second configuration file for instance allows to store the pass phrases in
a separate file with higher security settings

• The second configuration file has precedence over the first one

• This parameter can only be specified as PARAM or on the startup line. It is not
valid within a configuration file.

• Parameters specified in the configuration file can be overwritten by PARAM or
startup line settings.

CONTENTFILTER
Use this parameter to configure a text file with rules which will be applied to
all incoming messages in run modes TELNETS, PROXYS, PROXYC and
PROXY. If a message does not match the rule set, the connection will be
terminated and the message will be discarded.

Parameter Syntax
CONTENTFILETER file

62 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Arguments
 file

The filename of the rule set file or * for no filtering.

Default
If omitted, NSSL will use a value of * (no filtereing).

Example
CONTENTFILTER CFILTER

Considerations

• The value of the parameter can be changed without stopping NSSL using the
NSSLCOM command SET CONTENTFILTER file.

• The following example shows the syntax of the filter rules. This example will only
allow messagest starting with "<A" or "<B" and ending with ">" to pass the filter.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 63

###
##########
file to define content filter rules
empty lines or lines starting with '#' are ignored
###
##########

###
##########
example file based on the following requirements:

the following two are valid messages (double quotes are *not* part of
msg)
"<ABC>"
"<BBC>"

the following two are *not* valid messages
"<CCC>" - does not start with "<A" or "<B"
"text" - does not start with "<"
###
##########

###
##########
msg delimiters (required)
used to define a "message" as part of the byte stream
all bytes are ASCII values represented as decimal numbers
###
##########
start with < sign = 3C hex = 60 dec
msgstartbyte 60
end with > sign = 3E hex = 62 dec
msgendbyte 62

###
##########
list of regular expressions, in double quotes
(at least one required)

note that the engine implements "traditional unix regular
expressions"
see

en.wikipedia.org/wiki/Regular_expression#Traditional_Unix_regular_expre
ssions
for details

regular expressions are combined using an implicit "logical or"
a message matching any single regular expression will pass
a message matching no regular expression will fail
at least one regular expression must be present
###
##########
allow any message starting with "<A"
regexp "^<A."
allow any message starting with "<B"
regexp "^<B."

DENYIP
Use this parameter to specify which remote IP addresses are to be forbidden
to establish sessions ("black list").

Parameter Syntax
DENYIP range

Arguments

64 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

 range

specifies a set of forbidden remote IP addresses. Valid values are

o single IP addresses such as 10.1.1.11

o a subnet such as 10.1.1.*

o comma-separated lists of single IP addresses and subnets

Default
If omitted, NSSL will use an empty entry to not forbid any remote IP
addresses

Example
DENYIP 10.0.5.*, 10.0.6.123

Considerations

• See section "Using NSSL to limit the remote IP addresses" (in chapter
"Introduction") for the concept of remote IP filtering

• The paramter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

DONOTWARNONERROR
Use this parameter to log selected errors with LOGLEVEL 20 rather than as
WARNING. By default, all errors on sockets result in a WARNING being
displayed in the NSSL log. Using this parameter, a log message with
LOGLEVEL 20 will be issued instead for the configured error numbers.

Parameter Syntax
DONOTWARNONERROR ErrorList

Arguments
 ErrorList

specifies a list of comma-separated error numbers

Default
If omitted, NSSL will use an empty entry.

Example
DONOTWARNONERROR 4120

Considerations

• The example shown will yield in error 4120 ("Connection reset by remote")
generating a log message with LOGLEVEL 20 rather than a WARNING.

FTPALLOWPLAIN
Use this parameter to specify whether NSSL will allow unencrypted FTP
sessions when running in FTPS mode.

Parameter Syntax
FTPALLOWPLAIN boolean

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 65

Arguments
 boolean

if set to TRUE or 1 or Yes, NSSL will allow unencrypted traffic

Default
If omitted, NSSL will *not* allow unencrypted traffic

Example
FTPALLOWPLAIN TRUE

Considerations

• This parameter is relevant only if NSSL is running in the FTPS mode.

FTPCALLOW200REPLY
Use this parameter to specify whether NSSL will allow an illegal "200"
response to the AUTH TLS command sent to the remote FTP/TLS server.

Parameter Syntax
FTPCALLOW200REPLY boolean

Arguments
 boolean

if set to TRUE or 1 or Yes, NSSL will allow the illegal response.

Default
If omitted, NSSL will *not* allow the illegal 200 response.

Example
FTPCALLOW200REPLY TRUE

Considerations

• This parameter is relevant only if NSSL is running in the FTPC mode.

• The FTP/TLS specfication requires a "234" reply code to the AUTH TLS
command. To support some older FTP/TLS implementations to run against NSSL
in FTPC mode, this parameter has been added

FTPLOCALDATAPORT

Use this parameter to specify how NSSL will pick the local data port for the
data connection in FTPC mode with PASSIVE set to true.

Parameter Syntax
FTPLOCALDATAPORT number

Arguments
 number

0 for “pick a random port” or any specific port number

Default
If omitted, a value of 0 will be used.

66 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Example
FTPLOCALDATAPORT 20

Considerations

• This parameter is relevant only if NSSL is running in the FTPC mode with
PASSIVE set to TRUE

• Choosing a value other than zero will be firewall-friendly, however it can result in
errors if the remote FTP server does not choose random data ports itself.

FTPMAXPORT
Use this parameter to specify the maximum port number NSSL will use for
FTP data connections

Parameter Syntax
FTPMAXPORT number

Arguments
 number

the maximum port number NSSL will use for FTP data connections

Default
If omitted, NSSL will use a value of 41000

Example
FTPMAXPORT 22000

Considerations

• This parameter is relevant only if NSSL is running in the FTPS or FTPC mode.

• Together with the parameter FPTMinPORT it controls the values NSSL assigns for
the FTP data sockets. You can change this value to make sure that the FTP data
connections will not interfere with other TCP/IP services on your system.

FTPMINPORT
Use this parameter to specify the minimum port number NSSL will use for
FTP data connections

Parameter Syntax
FTPMINPORT number

Arguments
 number

the minimum port number NSSL will use for FTP data connections

Default
If omitted, NSSL will use a value of 40000

Example
FTPMINPORT 20000

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 67

Considerations

• This parameter is relevant only if NSSL is running in the FTPS or FTPC mode.

• Together with the parameter FPTMAXPORT it controls the values NSSL assigns
for the FTP data sockets. You can change this value to make sure that the FTP
data connections will not interfere with other TCP/IP services on your system.

HTTPBASE
Use this parameter to define the subvolume an NSSL HTTP server should
return requested resources from.

Parameter Syntax
HTTPBASE subvol | *

Arguments
 subvol

the name of a GUARDIAN subvolume.
*

means that the subvolume NSSL has been started on is used.

Default
If omitted, the standard installation subvolume for NSSL HTML contents will
be used ("NSSLHTML")

Considerations

• The parameter is ignored if not operating as an HTTP server.

Important Note: Crystal Point strongly recommends using a separate
subvolume other than the NSSL installation subvolume as HTTPBASE. Do
not put any files on this subvolume other than those allowed to be
downloaded by a browser user. Having any private key files on this
subvolume will compromise security!

Example
HTTPBASE $DATA1.MYHTML

HTTPZIP
Use this parameter to specify a ZIP file an NSSL HTTP server should return
requested resources from.

Parameter Syntax
HTTPZIP file

Arguments
 file

the name of a ZIP file containing HTTP contents.

Default

68 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

If omitted, an NSSL http server will search for a file named "HTTPZIP" on its
default subvolume. NSSL is delivered with a HTTPZIP archive containing the
NSSL welcome page and this manual in HTML format for on-line reading.

Considerations

• This option allows easy deployment of web content with a NonStop Guardian
system despite of the limitations of the Guardian file system.

• To prepare web content to be deployed with NSSL just use a standard ZIP tool to
pack all required files into a ZIP archive. As NSSL does not support compression,
please make sure to switch it off when packing your archive. The archive must be
uploaded to the NonStop server in binary format.

• The parameter is ignored if not operating as an HTTP server.

INTERFACE

Use this parameter to specify the IP address NSSL should use for local
binding on incoming connections.

Parameter Syntax
INTERFACE ip address

Arguments
 ip address

the IP address to bind to or “*” for none

Default
If omitted, NSSL will use the value of “*” and bind to no specific IP address

Example
INTERFACE 10.0.0.197

Considerations

• The parameter is relevant for the following run modes: HTTP, HTTPS, PROXY
(incoming socket), PROXYS (incoming socket), PROXYC (incoming socket),
FTPS (control listening socket being connected to from remote FTP client), FTPC
(control listening socket being connected to from local NonStop FTP client)

• Use this parameter to control which IP address NSSL binds to for incoming
connections.

• If a host name rather than an IP address is used to configure INTERFACE, name
resolution will take place only once during startup. If name resolution fails, NSSL
will terminate during startup

• See parameter TARGETINTERFACE for additional information.

KEEPALIVE
Use this parameter to specify if keep alive messages should be sent to the
TCP/IP sockets of established links.

Parameter Syntax
KEEPALIVE mode

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 69

Arguments
 mode

• 1 (on) for sending keep alive messages

• 0 (off) no messages are sent

Default
By default, keep alive messages are sent (1).

LICENSE
Use this parameter to specify different location for the NSSL license file.

Parameter Syntax
LICENSE file

Arguments
 file

the filename of the NSSL license file

Considerations

• If the filename is not fully qualified, NSSL will add the home subvolume of the
object file to the file name.

Default
If omitted, an NSSL process will search for a file named "LICENSE" on its
default subvolume (i.e. where the NSSL object resides).

LOGCONSOLE
Use this parameter to define if and to what console device NSSL log
messages are written to.

Parameter Syntax
LOGCONSOLE * | % | $0 | logdevice

Arguments
*

means that no log messages are written to a console
%

means that log messages are written to the home terminal of the NSSL process
$0

log messages are written to $0
 logdevice

log messages are written the given device (e.g. $DEV.#SUBDEV)

70 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Considerations

• The LOGLEVEL parameter controls what messages are produced by NSSL.

• The paramter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

Default
By default, log messages will be written to the home terminal ("%")

See also:
LOGEMS, LOGFILE, LOGLEVEL

LOGEMS
Use this parameter to define if NSSL log messages are written to EMS.

Parameter Syntax
LOGEMS collector | *

Arguments
*

means that no log messages are written to EMS
collector

Means that log messages are written to the collector with that name

Default
By default, no log messages are written to EMS ("*")

Considerations

• The LOGLEVEEMS parameter controls what messages are produced by NSSL.

• The LOGFORMATEMS parameter controls the log message format.

• The parameter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

• To send messages to the default collector $0 use
LOGEMS $0

• If the EMS collector can not be opened during startup, NSSL will terminate. If the
EMS collector can not be opened after changing it through NSSLCOM, the old
collector will stay active

See also:
LOGLEVELEMS, LOGFORMATEMS, LOGMAXFILELENGTH,
LOGFILERETENTION

LOGFILE
Use this parameter to define if and to what file NSSL log messages are
written.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 71

Parameter Syntax
LOGFILE * | file

Arguments
*

means that no log messages are written to a file
 file

the name of the log file

Default
By default, no log messages are written to a file ("*")

Considerations

• The LOGLEVEL parameter controls what messages are produced by NSSL.

• The LOGFORMAT parameter controls the log message format.

• The parameter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

• See section “Logfile/Auditfile rollover using round robin” in chapter "Configuring
And Running NSSL" for details on logfile rollover.

See also:
LOGLEVELFILE, LOGFORMATFILE, LOGMAXFILELENGTH,
LOGFILERETENTION

LOGFILERETENTION
Use this parameter to control how many log files NSSL keeps when logfile
rollover occurs

Parameter Syntax
LOGFILERETENTION n

Arguments
n

number of log files to keep

Default
By default, 10 files are kept.

Considerations

• a minimum of 10 is enforced for that parameter

• See section “Logfile/Auditfile rollover using round robin” in chapter "Configuring
And Running NSSL" for details on logfile rollover.

See also:
LOGMAXFILELENGTH, LOGFILE

72 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

LOGFORMAT
Considerations

• This parameter is retained for downward-compatibility only and has been replaced
by the parameters LOGFORMATCONSOLE and LOGFORMATFILE.

• If no value is set for the parameters LOGFORMATCONSOLE or
LOGFORMATFILE, they will inherit their value from the parameter LOGFORMAT.

• If both LOGFORMATCONSOLE and LOGFORMATFILE are set with a value, the
parameter of LOGFORMAT becomes meaningless.

See also:
LOGFORMATCONSOLE, LOGFORMATEMS, LOGFORMATFILE

LOGFORMATCONSOLE
Use this parameter to control the format of the log messages that are written
to the console.

Parameter Syntax
LOGFORMAT format

Arguments
 format

a number representing a bit mask controlling the following format options:

bit 1 (decimal 1): Date

bit 2 (decimal 2): header (log messages a pre-fixed with "[log]")

bit 3 (decimal 4): Time

bit 4 (decimal 8): Milliseconds

bit 5 (decimal 16): Process ID (name or PIN)

Bit 7 (decimal 64) Log Level of Message

Default
The default log format is 93 (date, time, milliseconds, process ID and log
level)

Example
Display date, time, milliseconds only:

LOGFORMAT 13

Display date, time only:
LOGFORMAT 5

See also:
LOGFORMATEMS, LOGFORMATFILE

LOGFORMATEMS
Use this parameter to control the format of the log messages that are written
to EMS.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 73

Parameter Syntax
LOGFORMATEMS format

Arguments
 format

a number representing a bit mask controlling the following format options:

bit 1 (decimal 1) Date

bit 2 (decimal 2) header (log messages a pre-fixed with "[log]")

bit 3 (decimal 4) Time

bit 4 (decimal 8) Milliseconds

bit 5 (decimal 16) Process ID (name or PIN)

bit 7 (decimal 64) Log Level of Message

Default
The default log format is 93 (date, time, milliseconds, process ID and log
level).

Example
Display date, time, and milliseconds only:

LOGFORMATEMS 13

Display date, time only:
LOGFORMATEMS 5

See also:
LOGFORMATCONSOLE, LOGFORMATFILE

LOGFORMATFILE
Use this parameter to control the format of the log messages that are written
to the log file.

Parameter Syntax
LOGFORMATFILE format

Arguments
 format

a number representing a bit mask controlling the following format options:
bit 1 (decimal 1) Date

bit 2 (decimal 2) header (log messages a pre-fixed with "[log]")

bit 3 (decimal 4) Time

bit 4 (decimal 8) Milliseconds

bit 5 (decimal 16) Process ID (name or PIN)

bit 7 (decimal 64) Log Level of Message

Default
The default log format is 93 (date, time, milliseconds, process ID and log
level).

74 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Example
Display date, time, milliseconds only:

LOGFORMAT 13

Display date, time only:
LOGFORMAT 5

See also:
LOGFORMATCONSOLE

LOGLEVEL
Considerations

• This parameter is retained for downward-compatibility only and has been replaced
by the parameters LOGLEVELCONSOLE and LOGLEVELFILE.

• If no value is set for the parameters LOGLEVELCONSOLE or LOGLEVELFILE,
they will inherit their value from the parameter LOGLEVEL.

• If both LOGLEVELCONSOLE and LOGLEVELFILE are set with a value, the
parameter of LOGLEVEL becomes meaningless.

See also:
LOGLEVELCONSOLE, LOGLEVELEMS, LOGLEVELFILE

LOGLEVELCONSOLE
Use this parameter to control what messages are written to the log console.

Parameter Syntax
LOGLEVELCONSOLE detail

Arguments
 detail

a number representing the detail level

Default
For downward compatibility, the default log level is taken from the parameter
LOGLEVEL if present. If no parameter LOGLEVEL is present, a default of 50
is used.

Considerations

• Using the parameter LOGLEVELCONSOLE allows to set a different log level for
the output to LOGCONSOLE than for the output to LOGFILE.

• The parameter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

See also:
LOGCONSOLE, LOGLEVELFILE, LOGFORMATCONSOLE,
LOGLEVELEMS

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 75

LOGLEVELEMS
Use this parameter to control what messages are written to EMS.

Parameter Syntax
LOGLEVELEMS detail

Arguments
 detail

a number representing the detail level

Default
For downward compatibility, the default log level is taken from the parameter
LOGLEVEL if present. If no parameter LOGLEVEL is present, a default of 50
is used.

Considerations

• Different log levels can be used for the outputs to LOGCONSOLE,
LOGLEVELEMS, and LOGFILE.

• The parameter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

See also:
LOGEMS, LOGLEVELCONSOLE, LOGLEVELFILE, LOGMAXFILELENGTH,
LOGFORMATFILE

LOGLEVELFILE
Use this parameter to control what messages are written to the log file.

Parameter Syntax
LOGLEVELFILE detail

Arguments
 detail

a number representing the detail level

Default
For downward compatibility, the default log level is taken from the parameter
LOGLEVEL if present. If no parameter LOGLEVEL is present, a default of 50
is used.

Considerations

• Using the parameter LOGLEVELFILE allows to set a different log level for the
output to LOGFILE than for the output to LOGCONSOLE.

• The parameter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

See also:

76 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

LOGFILE, LOGLEVELCONSOLE, LOGLEVELEMS ,
LOGMAXFILELENGTH, LOGFORMATFILE

LOGMAXFILELENGTH
Use this parameter to control the maximum size of a log file.

Parameter Syntax
LOGMAXFILELENGTH length

Arguments
 length

a number representing the maximum log file length in kilobytes.

Max. 40.000 or 40 MB

Min 100

Default
The default length is 20 000 KB.

Considerations

• After the current file reaches the maximum size a log rollover will occur. The
current log file will be renamed by replacing the last character with a "2". A new file
with the LOGFILE name will be created for subsequent log output.

See also:
LOGFILE, LOGLEVEL

LOGMEMORY
Use this parameter to send the memory usage of NSSL to the log output in
regular intervals

Parameter Syntax
LOGMEMORY number_of_io’s

Arguments
 number_of_io’s

a number representing after how many I/O operations NSSL will send its memory
usage to the log output

Default
The default is 0 meaning that memory usage will not be logged

Considerations

• Use to have an easy correlation between memory usage of NSSL and events in
the log output. Do not use if memory usage of NSSL is not of interest for you.

• The paramter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section “Command Interface
NSSLCOM” for details.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 77

MAXSESSIONS
Use this parameter to limit the number of concurrent connections in run
modes TELNETS, PROXYS, PROXYC and PROXY.

Parameter Syntax
MAXSESSIONS max

Arguments
 max

the number of allowed concurrent sessions or 0 for unlimited.

Default
If omitted, NSSL will.use a value of 0 (no limits)

Example
MAXSESSIONS 100

Considerations

• If the number of allowed sessions is reached, any further connection request will
be rejected and a Warning will be written to the log file

• The current number of connections is displayed in the STATUS command of
NSSLCOM.

MAXVERSION
Use this parameter to define the maximum admissible SSL/TLS protocol
version.

Parameter Syntax
MAXVERSION version

 version

an SSL/TLS version number. Currently supported values are:

• 2.0: SSL 2.0

• 3.0: SSL 3.0

• 3.1: SSL 3.1 / TLS 1.0

Default
The default for this parameter is "3.1" (i.e. SSL 3.1 / TLS 1.0).

See also:
MINVERSION

MINVERSION
Use this parameter to define the minimum admissible SSL/TLS protocol
version.

Parameter Syntax
MINVERSION version

78 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

 version

an SSL/TLS version number. Currently supported values are:

• 2.0: SSL 2.0

• 3.0: SSL 3.0

• 3.1: SSL 3.1 / TLS 1.0

Default
The default for this parameter is "3.1"

Considerations

• For security reasons, it is recommended to use the latest version of the TLS
protocol as standardized by the IETF (3.1). This requires setting MINVERSION to
"3.1".

See also:
MAXVERSION

PASSIVE
Use this parameter to define the direction of the data socket connection in
FTPC mode

Parameter Syntax
PASSIVE mode

Arguments
 mode

• 1 for passive mode

• 0 for active mode

Default
The default for this parameter is 1 for passive mode

Considerations

• This parameter is only relevant in the FTPC run mode of NSSL

• In FTP, the data socket connection request can be made by the FTP client
("passive mode") or by the FTP server ("active mode"). The best choice for your
environment depends on the capabilities of the FTP server you are communicating
with and on your firewall settings

• NSSL in FTPS mode currently only supports passive mode, therefore to interact
with NSSL in FTPS mode, make sure to set the PASSIVE parameter to 1 for
NSSL running in FTPC mode.

PEERCERTCOMMONNAME
Use this parameter to enforce verification of the content of remote certificates
presented to NSSL.

Parameter Syntax

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 79

PEERCERTCOMMONNAME commonname

Arguments
commonname

the expected common name of the remote certificate

Default
The default for this parameter is '*' which means the content will not be
verified.

Examples
PEERCERTCOMMONNAME tandem1.mycompany.com

Considerations

• This parameter should not be used together with the parameter
PEERCERTFINGERPRINT as behavior may be unpredictable then.

• If other than '*', the actual common name of the remote certificate will be
compared against the content of the parameter.

• If the actual value of the common name in the remote certificate is part of the
value configured in the parameter, it will be accepted. This allows to configure a
list of common names.

• If the matching fails, no sessions can be established

PEERCERTFINGERPRINT
Use this parameter to enforce verification of the content of remote certificates
presented to NSSL.

Parameter Syntax
PEERCERTFINGERPRINT fingerprint

Arguments
fingerprint

the expected fingerprint of the remote certificate

Default
The default for this parameter is '*' which means the content will not be
verified.

Examples
PEERCERTFINGERPRINT b533d676f9538617484bd4302c8db70e

Considerations

• This parameter should not be used together with the parameter
PEERCERTCOMMONNAME as behavior may be unpredictable then.

• If other than '*', the actual content of the remote certificate will be compared
against the content of the parameter.

• If the actual value in the certificate is part of the value configured in the parameter,
it will be accepted. This allows to configure a list of fingerprints or common
names.

80 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

• Fingerprints will be compared both as MD5 and SHA1 hashes.

• If the matching fails, no sessions can be established.

PORT
Use this parameter to specify the port number an NSSL server should listen
for incoming connections.

Parameter Syntax
PORT number

Arguments
 number

the decimal number of a TCP/IP port.

Default
The default for this parameter depends on the NSSL run mode:

HTTP: 80

HTTPS: 443

TELNETS: 11011 (*)

PROXYS 11011 (*)

PROXYC 11012 (*)

FTPS 11013 (*)

FTPC 11014 (*)

FTPCPLAIN 11014 (*)

ATTUNITYS 11015 (*)

MQS 1414

MQC 11414

Considerations

• If operating as a secure server, NSSL will only accept SSL connections on the
specified port.

• Starting NSSL to listen on a port number <=1024 requires SUPER group access.

• The ICANN manages a list of "well-known" port numbers for various protocols (see
http://www.iana.org/assignments/port-numbers). Most run modes of NSSL can not
be mapped against this list with certainty, those run modes are marked with an
asterisk (*). The default ports for those run modes were chosen from an
"unassigned" port range (11002-11110)

• The choice for the PORT value in your environment will depend on the
applications already running on your NonStop systems and the ports they use as
well as your firewall configuration.

• You can specify a comma-separated list of multiple ports, see section "Multiple
Configurations in a Single NSSL Process" for details.

http://www.iana.org/assignments/port-numbers

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 81

PTCPIPFILTERKEY
Use this parameter to specify a filter key to enable round robin filtering with
Parallel Library TCP/IP or TCP/IPV6.

Parameter Syntax
PTCPIPFILTERKEY password | *

Arguments
password

a password serving as a key to enable round robin filtering for multiple
instances of NSSL servers listening on the same port. The password will
override the value of the DEFINE =PTCPIP^FILTER^KEY, which may have
been passed to NSSL at startup.

*

No filter key will be set. However, any DEFINE =PTCPIP^FILTER^KEY
passed to NSSL at startup will remain in effect.

Default
The default for this parameter is *.

Considerations

• Use this parameter to enable round robin filtering for multiple NSSL servers
configured as generic processes (DEFINEs cannot be propagated to generic
processes).

SERVCERT
Use this parameter to specify the server certificate a secure NSSL server
should use to authenticate itself to an SSL client.

Parameter Syntax
SERVCERT file

Arguments
 file

Guardian file name of a DER encoded X.509 server certificate.

Default
If omitted, NSSL will search for a file "SERVCERT" on the default
subvolume.

Example
SERVCERT $DATA1.NSSL.MYCERT

Considerations

• A server certificate for testing purposes is delivered as SERVCERT file on the
NSSL installation subvolume to enable quick start installation.

• As NSSL indirectly supports BASE64 encodes certificates, any client certificates
received by a CA such as Verisign or Thawte can be used with with NSSL.

• The server certificate must match the private key file specified by SERVKEY.

82 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

See also:
SERVCERT, SERVKEY

SERVKEY
Use this parameter to specify the private key file for a secure NSSL server.

Parameter Syntax
SERVKEY file

Arguments
 file

file name of a DER encoded PKCS-8 encrypted private key file with PKCS-5
algorithm identifiers.

Default
If omitted, NSSL will search for a "SERVKEY" file on the default subvolume.

Example
SERVKEY $DATA1.NSSL.MYKEY

Considerations

• The private key data in the file is password encrypted. For NSSL to be able to
decrypt the file, the correct password must be specified by the SERVKEYPASS
parameter.

• A private key file for testing purposes is delivered as "SERVKEY" file on the NSSL
installation subvolume to enable quick start installation. This private key file
matches the test server certificate delivered as "SERVCERT". The password for
the SERVKEY file is "test".

See also:
SERVCERT, SERVKEYPASS

SERVKEYPASS
Use this parameter to specify the password for the private key file.

Parameter Syntax
SERVKEYPASS password

Arguments
 password

the password or pass phrase to decrypt the private key file. The password string may
contain spaces. However, leading or trailing spaces will be ignored.

Default
If omitted, NSSL will try "test" as password.

Example
SERVKEYPASS my private passphrase

Considerations

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 83

• The default password ("test") enables quickstart installation with the "SERVKEY"
public key file delivered with NSSL.

See also:
SERVCERT, SERVKEYPASS

SLOWDOWN
Use this parameter to make NSSL use less CPU cycles for encryption. This
will result in a decrease of possible throughput.

Parameter Syntax
SLOWDOWN <ticks>

Arguments
 ticks

After each I/O operation, NSSL will call the Guardian System Procedure DELAY with
the value of <ticks>. A higher value will decrease both throughput and CPU usage of
NSSL.

Default
If omitted, SLOWDOWN will be 0 and NSSL will consume all available CPU
resources.

Example
SLOWDOWN 1

Considerations

• In most installations, the default value of 0 should be acceptable

• The parameter is mostly intended for use with the FTPC or FTPS modes of NSSL.
Setting SLOWDOWN to values between 1 and 5 will significantly reduce CPU
usage but will also make the time a file transfer will take higher.

• The impact of NSSL high volume data encryption/decryption can also be
influenced by the priority of the NSSL process. However, if it is desirable to run
NSSL at a higher priority than the target plain servers/clients, the SLOWDOWN
can be used to limit the impact of the cryptographic operations.

• The best value for your environment will depend both on your hardware and
requirements.

SOCKSHOST, SOCKSPORT, SOCKSUSER
Use these three parameter to make NSSL act as a SOCKS Version 4 client
in the run modes FTPC, FTPCPLAIN, PROXY or PROXYC.
(The SOCKS protocol is a protocol that relays TCP sessions at a firewall host
to allow application users transparent access across the firewall. For more
information about SOCKS, please see http://en.wikipedia.org/wiki/SOCKS.)

Parameter Syntax
SOCKSHOST sockshost

SOCKSPORT socksport

SOCKSUSER socksuser

http://en.wikipedia.org/wiki/SOCKS

84 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Arguments
 sockshost

the hostname or IP address of the host running the SOCKS-Version 4 enabled
firewall. A value of * indicates that the SOCKS protocol will not be used.

 socksport

the listening port of the host running the SOCKS-Version 4 enabled firewall
 socksuser

the SOCKS user name to be used to authenticate against the SOCKS server

Default
If omitted, NSSL will use a value of * for SOCKSHOST meaning the SOCKS
protocol will not be used.

Example
SOCKSHOST 172.3.5.99
SOCKSPORT 1911
SOCKSUSER sockstest

Considerations

• In run modes PROXY and PROXYC the value of TARGETPORT will still be
required to determine the final host to connect to.

• In run modes FTPC and FTPCPLAIN the final host to connect to will be configured
by adding it to the user name just as when not using SOCKS.

SUBNET
Use this parameter to specify the TCP/IP process an NSSL process should
listen on for incoming connections.

Parameter Syntax
SUBNET tcpip-process-name

Arguments
 tcpip-process-name

the name of an existing TCP/IP process on your system

Default
If omitted, the NSSL process will be bound to "$ZTC0".

Example
SUBNET $ZTC03

Considerations

• If you added a DEFINE =TCPIP^PROCESS^NAME to the TACL environment you
use to start NSSL, this setting will override the SUBNET parameter.

• If you use Parallel Library TCPIP and want to share identical ports across multiple
instances of NSSL you need to add an identical DEFINE to all instances sharing
that port as in the following example (please refer to the HP NonStop manual
"TCP/IP (Parallel Library) Configuration and Management Manual—522271-002",
section 3, subsection "Monolithic Listening Model" for more details):

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 85

ADD DEFINE =PTCPIP^FILTER^KEY, class map, file A1234

SWAPCOMSECURITY
Use this parameter to restrict execution of NSSLCOM commands

Parameter Syntax
SWAPCOMSECURITY boolean

Arguments
boolean

if set to TRUE, "sensitive" NSSLCOM commands can only be executed by
a) a member of the SUPER group
b) the user under which the NSSL process in running

Default
The default for this parameter is FALSE.

Example
SWAPCOMSECURITY TRUE

Considerations

• The following commands are considered sensitive:

o all SET commands

o the LOGMESSAGE, ROLLOVER LOGFILE and RELOAD CERTIFICATES
commands

TARGETINTERFACE

Use this parameter to specify the IP address NSSL should use for local
binding on outgoing connections.

Parameter Syntax
TARGETINTERFACE ip address

Arguments
 ip address

the IP address to bind to or “*” for none

Default
If omitted, NSSL will use the value of “*” and bind to no specific IP address

Example
TARGETINTERFACE 10.0.0.197

Considerations

• The parameter is relevant for the following run modes: PROXY (outgoing socket),
PROXYS (outgoing socket), PROXYC (outgoing socket), FTPS (control socket
connecting to FTPSERV), FTPC (control socket connecting to remote FTP server)

• Use this parameter to control which IP address NSSL binds to for outgoing
connections.

86 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

• If a host name rather than an IP address is used to configure
TARGETINTERFACE, name resolution will take place only once during startup. If
name resolution fails, NSSL will terminate during startup

• See parameter INTERFACE for additional information.

TARGETHOST
Use this parameter to specify the IP host an NSSL proxy server should route
connections to.

Parameter Syntax
TARGETHOST ip address

Arguments
 ip address

the IP address of the target host

Default
If omitted, the NSSL proxy route connections to the "local loopback address"
("127.0.0.1").

Example
TARGETHOST 192.45.23.3

Considerations

• The parameter must not be given if NSSL operates as a HTTP(S) server, in this
case NSSL abends with an error message .

• If the target server process runs on the same TCP/IP process (SUBNET) you
should use the "local loopback address" ("127.0.0.1"). This is recommended for
proxy servers, as it avoids that unencrypted data has to traverse the network.

• You can specify a comma-separated list of multiple target hosts, see section
"Multiple Configurations in a Single NSSL Process" for details

TARGETPORT
Use this parameter to specify the port number an NSSL proxy server should
route connections to.

Parameter Syntax
TARGETPORT number

Arguments
 number

the decimal number of the target TCP/IP port.

Default
If omitted, the NSSL proxy will try route connections to the well known telnet
port (23).

Example
TARGETPORT 1023

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 87

Considerations

• The parameter is ignored in the run modes HTTP, HTTPS and FTPC.

• You can specify a comma-separated list of multiple target ports, see section
"Multiple Configurations in a Single NSSL Process" for details.

TARGETSUBNET
Use this parameter to specify the TCP/IP process an NSSL process should
use for outgoing connections.

Parameter Syntax
TARGETSUBNET tcpip-process-name

Arguments
 tcpip-process-name

the name of an existing TCP/IP process on your system

Default
If omitted, the NSSL process will use same TCP/IP process which is
configured for incoming connections (SUBNET parameter).

Example
TARGETSUBNET $ZTC03

Considerations

• If you added a DEFINE =TCPIP^PROCESS^NAME to the TACL environment you
use to start NSSL, this setting will override the TARGETSUBNET parameter.

• The parameter is ignored in the run modes HTTP, HTTPS

TCPIPHOSTFILE
Use this parameter to specify the value of the DEFINE=TCPIP^HOST^FILE
value.

Parameter Syntax
TCPIPHOSTFILE hostfile | *

Arguments
hostfile

a hostfile to be used for DNS name resolution. The hostfile will override the
value of the DEFINE =TCPIP^HOST^FILE, which may have been passed to
NSSL at startup.

*

No hostfile will be set. However, any DEFINE =TCPIP^HOST^FILE passed
to NSSL at startup will remain in effect.

Default
The default for this parameter is *.

Considerations

88 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

• See the HP NonStop manual for details of the usage of the DEFINE
=TCPIP^HOST^FILE.

TCPIPNODEFILE
Use this parameter to specify the value of the DEFINE=TCPIP^NODE^FILE
value.

Parameter Syntax
TCPIPNODEFILE nodefile | *

Arguments
nodefile

a nodefile to be used for DNS name resolution. The nodefile will override the
value of the DEFINE =TCPIP^NODE^FIL., which may have been passed to
NSSL at startup.

*

No nodefile will be set. However, any DEFINE =TCPIP^NODE^FIL. passed
to NSSL at startup will remain in effect.

Default
The default for this parameter is *.

Considerations

• See the HP NonStop manual for details of the usage of the DEFINE
=TCPIP^NODE^FILE.

TCPIPRESOLVERNAME
Use this parameter to specify the value of the DEFINE
=TCPIP^RESOLVER^NAME value.

Parameter Syntax
TCPIPRESOLVERNAME resolver | *

Arguments
resolver

a resolver to be used for DNS name resolution. The resolver will override the
value of the DEFINE =TCPIP^RESOLVER^NAME, which may have been
passed to NSSL at startup.

*

No resolver will be set. However, any DEFINE =TCPIP^RESOLVER^NAME
passed to NSSL at startup will remain in effect.

Default
The default for this parameter is *.

Considerations

• See the HP NonStop manual for details of the usage of the DEFINE
=TCPIP^RESOLVER^NAME.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 89

TCPNODELAY
Use this parameter to specify whether RFC1323 will be activated on all
sockets which NSSL controls.

Parameter Syntax
TCPNODELAY boolean

Arguments
 boolean

if set to TRUE or 1 or Yes, NSSL will activate RFC1323.

Default
If omitted, NSSL will *not* activate RFC1323.

Example
TCPNODELAY TRUE

Considerations

• If this parameter is set to true, NSSL sets a socket option TCP_NODELAY when
initializing sockets. This can help speed up throughput – please see RFC1323 and
the HP NonStop TCP/IP programming manual for details.

TRUST
Use this parameter to specify a list of trusted CAs when running as SSL
client.

Parameter Syntax
TRUST fingerprint [, fingerprint, ...]

or
TRUST certificate [, certificate, ...]

Arguments
 fingerprint

the trusted CA certificate’s MD5 fingerprint.
 certificate

the trusted CA certificate in DER encoded format

Default
If omitted, NSSL will not check the TLS/SSL partner’s certificate chain.

Examples
TRUST b533d676f9538617484bd4302c8db70e, a723502b68675b667ebde9964ae29543

TRUST rootcert

Considerations

• The TRUST parameter can be specified in two ways: either by specifying the MD5
fingerprints of the CA certificates or by specifying a filename containing the full
certificate in DER encoding. The two formats can not be mixed.

90 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

• NSSL versions 1043 and earlier only support specifying the fingerprints of the
trusted certificates

• If the remote SSL server is sending the complete certificate chain, the two forms of
specifying the trusted CAs do not differ in functionality. Some SSL servers do not
send the complete certificate chain during the handshake; for those servers the
missing signing certificate(s) should be specified with the "certificate" syntax of the
parameter

• The paramter can be changed without having to restart NSSL using the
NSSLCOM command interpreter, please see section "Command Interface
NSSLCOM" for details

Note: Prior to NSSL version 1043, that paramter was also used to enforce
SSL client authentication when running as SSL server. This is now done with
a new parameter CLIENTAUTH.

Multiple Configurations in a Single NSSL Process
A single NSSL process can listen on multiple ports at once and forward them
to different IP addresses/port numbers. The following parameters are global
to a single NSSL instance:

• SUBNET

• TARGETSUBNET

• run mode

The following three parameters can be supplied as comma-separated lists:

• PORT

• TARGETPORT

• TARGETHOST

In case a comma-separeted list is found, NSSL will match the individual
entries to create tupels (PORT, TARGETPORT, TARGETHOST). Incoming
connections on each PORT will then be forwarded to the matching
TARGETPORT and TARGETHOST.

As an example, if you want to forward

• connections coming in on port 1023 to port 1023 on host Host23

• connections coming in on port 1024 to port 1024 on host Host24

you would start NSSL as follows:
RUN NSSL PROXYS; PORT 1023,1024; TARGETPORT 23,24; TARGETHOST Host23,Host24

Non-Stop Availability
Using NSSL ensures non-stop availability of NonStop based applications
across the network in conjunction with a OutsideViewWEB or AppView
deployment. Running on the Guardian platform, NSSL takes advantage of
the NonStop fundamentals.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 91

On G series systems, NSSL services can be configured as generic
processes, enabling automatic recovery from failures, such as CPU outages.
For D series systems, non-stop availability can be achieved by implementing
NSSL services as static PATHWAY servers monitored by a non-stop
Pathway Monitor.

 Note: NSSL cannot be run as a non-stop process. However, this is not
required to achieve non-stop availability. Running as a non-stop process
would not add value, as TCP sessions (both for TELNET and HTTP) are
reset upon CPU takeover. non-stop availability is achieved with NSSL by an
automatic restart upon failures. This can be achieved by the mechanisms
described in this section.

Configuring NSSL as a Generic Process (G series)
The following example SCF commands can be used to configure an NSSL
HTTP server as a generic process:
ALLOW ALL ERRORS
ASSUME PROCESS $ZZKRN

ABORT #HTTPD
DELETE #HTTPD

ADD #HTTPD, AUTORESTART 10, &
 HOMETERM $ZHOME, &
 PRIORITY 158, &
 PROGRAM $SYSTEM.COMFNSSL.NSSL, &
 DEFAULTVOL $SYSTEM.COMFNSSL, &
 NAME $HTTPD, &
 STARTUPMSG "HTTP; PORT 80; SUBNET $ZTC01; LOGCONSOLE *; &
 LOGFILE HTTPLOG; HTTPBASE $DATA.OVSEC", &
 STARTMODE MANUAL, &
 USERID SUPER.SYSTEM , &
 CPU FIRST

START #HTTPD
INFO #HTTPD
STATUS #HTTPD

Before running NSSL as a generic process, we recommend that you have a
working RUN NSSL command on TACL level. This command should be easy
to convert to the respective SCF ADD command. For example, the NSSL
startup line parameters are specified with the STARTUPMESSAGE
parameter.

If running NSSL as a generic process, we recommend to send the NSSL log
output to a log file instead of writing to the home terminal (default). In the
example above, console logging is turned off, while log messages are written
to the file HTTPLOG on the default volume.

If you want to configure multiple NSSL servers listening on the same port
with Parallel Library TCP/IP or TCP/IPV6 round robin filtering, you should
specify the filter key with the PTCPIPFILTERKEY configuration parameter
(DEFINEs cannot be propagated to generic processes).

Please refer to the "SCF Reference Manual for the Kernel Subsystem" in the
HP NonStop documentation set for further details.

92 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

Configuring NSSL as a Static Pathway Server (D
series)
Either in an existing Pathway system or in a new Pathway system explicitly
started for NSSL monitoring purposes you can configure an NSSL static
service with the following example PATHCOM commands (in this case an
NSSL HTTP server is configured):

RESET SERVER ASSIGN, PARAM
SET SERVER PROGRAM $SYSTEM.COMFNSSL.NSSL
SET SERVER AUTORESTART 20
SET SERVER CPUS (0:1,1:0)
SET SERVER NUMSTATIC 1
SET SERVER HOMETERM $VHS
SET SERVER OWNER SUPER.SYSTEM
SET SERVER SECURITY "o"
SET SERVER TMF OFF
SET SERVER VOLUME $SYSTEM.COMFNSSL
SET SERVER STARTUP "HTTP; PORT 80; SUBNET $ZTC01; LOGCONSOLE *;
 LOGFILE HTTPLOG; HTTPBASE $DATA.OVSEC"
SET SERVER PROCESS $HTTPD
ADD SERVER HTTPD

START SERVER HTTPD

Before running NSSL as a Pathway server, we recommend that you have a
working RUN NSSL command on TACL level. This command should be easy
to convert to the respective PATHCOM SET SERVER commands. For
example, the NSSL startup line parameters are specified with the PATHCOM
SET SERVER STARTUP command.

If running NSSL as a Pathway server, we recommend to send the NSSL log
output to a log file instead of writing to the home terminal (default). In the
example above, console logging is turned off, while log messages are written
to the file HTTPLOG on the default volume specified with the SET SERVER
VOLUME command.

Please refer to the "NonStop TS/MP System Management Manual" in the HP
NonStop documentation set for further details.

Configuring NSSL as Multi-Homed Proxy
If NSSL is used with a proxy run mode, you can configure different TCP/IP
process names for the listening and connecting sockets. One of the TCP/IP
processes could even be a loopback-only process, without any connection to
the network.

This "multi-homed" configuration allows to protect non-secure server ports
from external access. It also allows to prevent a client proxy from being
hijacked by an external attacker.

A multi-homed proxy is configured by setting the NSSL TARGETSUBNET
parameter to a different TCP/IP process than the SUBNET parameter. While
the SUNBET parameter determines, what TCP/IP process will listen on for
incoming connections, the TARGETSUBNET parameter controls, what
TCP/IP process is used for outgoing connections.

To Run NSSL as a Multi-Homed Proxy

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 93

1 Determine the TCP/IP processes the proxy should listen and
connect on.

2 To start a TELNETS proxy listening on $ZTC0 and forwarding
connections to a TELSERV listening on $ZTCL, port 23, issue
the following command at the command prompt:

RUN NSSL/NAME $STN0/ TELNETS; PORT 8423; SUBNET $ZTC0;
 TARGETSUBNET $ZTCL

3 To start a FTPC proxy listening on $ZTCL, port 21 and
forwarding FTP connections to a remote secure FTP server via
$ZTC0, issue the following command:

RUN NSSL/NAME $FTPC/ FTPC; PORT 21; SUBNET $ZTCL;
 TARGETSUBNET $ZTC0

To access the FTPC proxy with the FTP client:
ADD DEFINE =TCPIP^PROCESS^NAME, FILE $ZTCL

FTP 127.0.0.1

Configuring a Loopback TCP/IP Process
If you do not want your plain servers to be available for outside connections,
but force all traffic through an NSSL proxy, you may want to use a loopback
only TCP/IP process. Likewise, having a client proxy listen only on a
loopback TCP/IP process will prevent the client proxy from being hijacked by
an external attacker.

A loopback-only TCP/IP process can be easily configured as follows:
TCPIP/ Name $ZTCL, NOWAIT/
SCF
> ALTER SUBNET #LOOP0, IPADDRESS 127.1
> START SUBNET #LOOP0

After starting the TCPIP process, you may start your servers on this process
with the usual procedures.

Monitoring NSSL

Overview
NSSL writes log messages to a terminal, to a file, or to EMS. This is
controlled by the parameters LOGCONSOLE, LOGFILE and LOGEMS. Log
messages can be written to any combination of those three “log targets” (ie.
a single one, two of them, all of them, none of them).

By default, log messages are neither written to EMS nor to a log file. This is
implemented by the default values of LOGEMS, LOGFILE and
LOGCONSOLE. These defaults were chosen for an easy initial setup of the
NSSL object file.

Most parameters mentioned in this section can be configured both during
startup as well as once NSSL is running already. In the latter case, the
parameters can be changed by using the NSSLCOM command interface,
please see .link to NSSLCOM section.. for more details on the usage of
NSSLCOM.

94 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

What is a log message?
A log message is issued by NSSL for informational purposes, as a warning,
or to indicate a fatal condition, which cannot be corrected automatically.

Why are there three different log devices?
There are three different devices which to messages can be logged, i.e. a
terminal, a file, or EMS. Operators may choose their favorite location for
being alerted.

For productive installation, it is recommended to either have NSSL log events
to a file (LOGFILE, LOGFORMATFILE, LOGLEVELFILE) or to EMS
(LOGEMS, LOGFORMATEMS, LOGLEVELEMS).

Log levels of these three devices can be different, i.e. can be written
independently from each other.

What is a log level?
A log level is a number assigned to an every message in order to indicate its
seriousness for the continuation of the running instance of NSSL. In general,
a higher log level for a given message indicates less importance. While log
levels of individual messages can not be changed, it can be controlled which
levels will be displayed at all through the LOGLEVELxxx parameters.

Log Level Recommendations
The log level can be chosen individually for each log device through the
parameters LOGLEVELFILE, LOGLEVELEMS and LOGCONSOLE.
Depending on the device, it may be desirable to see different kind of log
messages. The following table gives an indication of what “severity”
individual log levels relate to:

Log Lever Meaning

Level 0 fatal errors.

Up to level 10 only warnings.

Up to level 30 On Startup, NSSL issues a whole set of log
messages. Those will document the current
version and the settings which were used to
start the NSSL process. The messages only
occur once at startup.

Up to level 50 normal log messages like “close by remote
client”, etc.

Up to level 89 messages only needed for trouble-shooting.

Starting from level 90 only messages to analyze extreme problems.

See the appendix for a detailed list of log messages and warnings issued by
NSSL.

The following shows a sample output for the startup log messages.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 95

11> run nssl telnets; port 9023
08:59:48.52|20|--

08:59:48.52|10|comForte SWAP server version
T9999G06_18Sep2003_comForte_SSLD_S40_1031
08:59:48.52|10|using openssl version 0.9.7 - see http://www.openssl.org
08:59:48.53|10|config file: '(none)'
08:59:48.53|10|runtime args: 'TELNETS; PORT 9023'
08:59:48.53|20|--------- start settings for Logging -----------
08:59:48.53|20| process name is $Y597
08:59:48.53|20| trace file is '*' ('*' means none)
08:59:48.54|20| max file length 20480000 bytes, length-check every 100
writes
08:59:48.54|20| console is '%' ('*' means none, '%' means home
terminal)
08:59:48.54|20| global maximum level is 9999, maximum dump length is
112
08:59:48.54|20|--------- end settings for Logging -------------
08:59:48.54|10|log level is 50
08:59:49.01|10|your system number is 12151
08:59:49.21|10|license file check OK, license file 'LICENSE',
expiration is never
08:59:49.21|30|starting collecting of random data
08:59:52.30|10|collection of 64 bytes random data finished
08:59:52.61|20|dumping configuration:
[def] ALLOWIP <*>
[def] CACERTS <CACERT>
[def] CIPHERSUITES <0.4,0.10,0.5>
[def] DENYIP <>
[def] LICENSE <LICENSE>
[def] LOGCONSOLE <%>
[def] LOGFILE <*>
[def] LOGFORMAT <76>
[def] LOGLEVEL <50>
[def] LOGMAXDUMP <100>
[def] LOGMAXFILELENGTH <20000>
[def] MAXVERSION <3.1>
[def] MINVERSION <3.0>
[run] PORT <9023>
[def] RANDOMFEED <64>
[def] SERVCERT <SERVCERT>
[def] SERVKEY <SERVKEY>
[def] SERVKEYPASS <??11??>
[def] SLOWDOWN <0>
[def] SUBNET <$ZTC0>
[def] TARGETHOST <127.0.0.1>
[run] TARGETPORT <23>
[def] TARGETSUBNET <$ZTC0>
[def] TESTWRONGDATASOCKET <0>
08:59:52.84|50|OpenSSL cipherstring 'RC4-MD5:DES-CBC3-SHA:RC4-SHA:'
08:59:52.85|30|loading Server Certificate from file 'SERVCERT'
08:59:52.96|20|adding CA Certificate Chain Level 1/1: 'CACERT'
08:59:52.96|30|loading next Certificate Chain file from file 'CACERT'
08:59:53.07|20|Fingerprint of Root CA is
<F9E29DFC22D687C20C353BC2E37F959A>
08:59:53.07|30|loading private key from file 'SERVKEY'
08:59:53.15|10|DEFINE =TCPIP^PROCESS^NAME has value '\COMF.$ZTC0'
08:59:53.15|10|parameter SUBNET will be ignored
08:59:53.15|20|TCP/IP process is \COMF.$ZTC0
08:59:53.16|20|secure-to-plain proxy started on target host 127.0.0.1,
targetport 23, source port 902311

Customizing the Log Format
NSSL allows to customize the appearance of the log messages to a certain
extent. For example, you may add the current date to the log message
header. Please refer to the LOGFORMATCONSOLE, LOGFORMATEMS,
and LOGFORMATFILE parameter descriptions for details.

96 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

To add the date to log messages
1. Start NSSL with the LOGFORMATCONSOLE parameter set to 5: 0
RUN NSSL /.../ HTTP; LOGFORMATCONSOLE 5

Using SHOWLOG to View a Log File
NSSL servers may be configured to write log files to disk (see parameter
LOGFILE). For performance reasons, those log files are created as
unstructured files:
15> fileinfo swaplog
$data1.comfswap
 CODE EOF LAST MODIFIED OWNER RWEP PExt
Sext
swaplog 0 5044 25sep2003 15:14 110,111 aaaa 4
28
16>$SYSTEM COMFSWAP

While the program is running, the log file is always open, however it may be
concurrently opened for viewing. To convert the unstructured file into a
readable format, a tool SHOWLOG is supplied. Invoking SHOWLOG without
arguments will display a brief syntax summary:

20> run showlog
comForte SHOWLOG log file converter Version
T9999A05_09Feb2007_comForte_SHOWLOG_0019
usage: SHOWLOG <log file> [<process_one_line file>] [<start>] [<end>]
 <log file> | the input log file to be converted
 <process_one_line file> | file to write to, default is '*' meaning
the home
 terminal
 <start> | either byte offset from beginning OR
 timestamp in format "ddmmmyy HH:MM:SS"
 (example 30Jan07 21:01:59)
 <end> | either number of bytes after beginning OR
 timestamp in format "ddmmmyy HH:MM:SS"
 (example 30Jan07 21:01:59)

---examples---
SHOWLOG logfile whole log file written to
home terminal

SHOWLOG logfile logedit 10000 1000 1000 bytes starting at offset
10000
 written to EDIT file
logedit

SHOWLOG logfile * "30Jan07 20:00:10" "30Jan07 21:00:20"
 messages in timeframe down to (ss) level to
home terminal
$DATA1 COMFSWAP 3>

 If SHOWLOG is run with only the name of the log file as first runtime
argument, it will dump the whole log file to the home terminal. The byte offset
within the log file will be displayed every now and then; this allows you to limit
the output of showlog to certain sections of the log file as shown below.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 97

26> run showlog swaplog
comForte SHOWLOG log file converter Version
T9999A05_23Sep2003_build_0017
starting at offset 0
dumping at most -1 bytes
---processing in-file 'swaplog'
12:54:16.09|20|--

12:54:16.44|10|comForte SWAP server version
T9999G06_15Sep2003_comForte_SSLD_S40
_1031
12:54:16.48|10|using openssl version 0.9.7 - see http://www.openssl.org
12:54:16.55|10|config file: '(none)'
12:54:16.62|10|runtime args: 'PROXYS; PORT 23456'
12:54:16.67|20|--------- start settings for Logging -----------
12:54:16.72|20| process name is $X4J3
12:54:16.79|20| trace file is 'swaplog' ('*' means none)
12:54:16.83|20| max file length 20480000 bytes, length-check every 100
writes
12:54:16.86|20| console is '%' ('*' means none, '%' means home
terminal)
12:54:16.91|20| global maximum level is 9999, maximum dump length is
112
12:54:16.94|20|--------- end settings for Logging -------------
12:54:16.97|10|log level is 50
12:54:17.29|10|your system number is 12151
12:54:17.90|10|license file check OK, license file 'LICENSE',
expiration is never
r
12:54:17.94|30|starting collecting of random data
12:54:21.12|10|collection of 64 bytes random data finished
12:54:24.60|20|dumping configuration:

[def] ALLOWIP <*>
[def] CACERTS <CACERT>
[def] CIPHERSUITES <0.4,0.10,0.5>
[def] DENYIP <>
[def] LICENSE <LICENSE>
[def] LOGCONSOLE <%>
[par] LOGFILE <swaplog>
[def] LOGFORMAT <76>
[def] LOGLEVEL <50>
[def] LOGMAXDUMP <100>
[def] LOGMAXFILELENGTH <20000>
[def] MAXVERSION <3.1>
[def] MINVERSION <3.0>
[run] PORT <23456>
[def] RANDOMFEED <64>
[def] SERVCERT <SERVCERT>
[def] SERVKEY <SERVKEY>
[def] SERVKEYPASS <??11??>
[def] SLOWDOWN <0>
[def] SUBNET <$ZTC0>
[def] TARGETHOST <127.0.0.1>
[def] TARGETPORT <23>
[def] TARGETSUBNET <$ZTC0>
[def] TESTWRONGDATASOCKET <0>
12:54:25.49|50|OpenSSL cipherstring 'RC4-MD5:DES-CBC3-SHA:RC4-SHA:'
12:54:25.58|30|loading Server Certificate from file 'SERVCERT'
12:54:26.79|20|adding CA Certificate Chain Level 1/1: 'CACERT'
12:54:26.86|30|loading next Certificate Chain file from file 'CACERT'
12:54:27.09|20|Fingerprint of Root CA is
<F9E29DFC22D687C20C353BC2E37F959A>
12:54:27.16|30|loading private key from file 'SERVKEY'
12:54:27.93|10|DEFINE =TCPIP^PROCESS^NAME has value '\COMF.$ZTC0'
12:54:28.00|10|parameter SUBNET will be ignored
12:54:28.06|20|TCP/IP process is \COMF.$ZTC0
12:54:28.13|20|secure-to-plain proxy started on target host 127.0.0.1,
target po
rt 23, source port 23456

98 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

---Byte offset is 2620

--- EOF reached, done

27>

The second runtime argument can be used to create a new EDIT file
containing the log file contents. The following example shows how to convert
the whole log file into an edit file (note that this can take some time for large
files):
42> run showlog swaplog logedit
comForte SHOWLOG log file converter Version
T9999A05_23Sep2003_build_0017
starting at offset 0
dumping at most -1 bytes
writing out-file 'logedit'
---processing in-file 'swaplog'

--- EOF reached, done

43> fi logedit
$data1.tbswap
 CODE EOF LAST MODIFIED OWNER RWEP PExt
SExt
logedit 101 5506688 18sep2003 13:11 110,110 aaaa 4
16
44>

The third and last runtime arguments can be used to limit the part of the file
which is converted. This is helpful for the viewing large log files. The
following example shows dumping a large log file. Only a limited number of
log messages (totaling 10.000 bytes) after a given offset (5.000.000) are
shown:
33> run showlog swaplog * 5000000 10000
comForte SHOWLOG log file converter Version
T9999A05_23Sep2003_build_0017
starting at offset 5000000
dumping at most 10000 bytes
---processing in-file 'swaplog'

(output not shown here)

---finishing dump of file before end-of-file

---done 34>

Rather than using byte offsets, SHOWLOG can also use timestamp as filters
for which parts of the log file to display. The command

SHOWLOG logfile * "30Jan07 20:00" "30Jan07 21:00"

will only display log messages between the two given timestamps.

 Note, that in this example by using '*' as the second runtime argument the
output is written to the home terminal. When using the byte offset param or

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 99

the byte offset param and length param, the out file param must be entered
as well.

Logfile/Auditfile rollover using round robin
When logging to a log file, NSSL uses round-robin to switch to a new log file.
The behavior for round-robin has changed with NSSL 1046 and later and is
described in this section.

Logfile rollover applies both to auditing (to the file configured with the
AUDITFILE parameter) as logging (to the file configured with the LOGFILE
parameter).

For all versions of NSSL, logfile rollover occurs when the logfile is greater
than the size configured in the parameter LOGMAXFILELENGTH or when
the audit file is greater than the size configured in the parameter
AUDITMAXFILELENGTH.

Logfile rollover for NSSL versions 1045 and earlier
NSSL releases 1045 and earlier implement round-robin with two files. The
last character of the file named will be replaced by a "2" for rollover, the last
character can not be a "2" for the original filename.

With LOGFILE having a value of SWLOG, the current file name will always
be SWLOG while the archive file name will be SWLO2.

Logfile rollover for NSSL versions 1046 and later
NSSL releases 1046 and later implement round-robin with at least 10 files.
The number of files can be configured using the LOGFILERETENTION (or
AUDITFILERETENTION) parameter.

Archive files created during rollover will be created by appending a number to
the log file name. The number of digits of the number appended will be
calculated depending on the number of files to keep.

With LOGFILERETENTION set to 10 (the default value), the archive files for
a LOGFILE of SWLOG will be called SWLOG0, SWLOG1, ... SWLOG9.

With LOGFILERETENTION set to 1000, the archive files for a LOGFILE of
SWLOG will be called SWLOG000, SWLOG001, ... SWLOG999.

Web Server Log
If running as a web server, the log messages describe HTTP requests
received from the clients and SSL related events.

The following example shows a typical log output of a plain HTTP server.

100 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

$SYSTEM COMFSWAP 9> run NSSL http; port 8080
08:56:39.56|20|--

08:56:39.56|10|comForte SWAP server version
T9999G06_18Sep2003_comForte_SSLD_S40_1031
08:56:39.57|10|using openssl version 0.9.7 - see http://www.openssl.org
08:56:39.57|10|config file: '(none)'
08:56:39.57|10|runtime args: 'HTTP;PORT 8080'
08:56:39.57|20|--------- start settings for Logging -----------
08:56:39.57|20| process name is $Y596
08:56:39.58|20| trace file is '*' ('*' means none)
08:56:39.58|20| max file length 20480000 bytes, length-check every 100
writes
08:56:39.58|20| console is '%' ('*' means none, '%' means home
terminal)
08:56:39.58|20| global maximum level is 9999, maximum dump length is
112
08:56:39.58|20|--------- end settings for Logging -------------
08:56:39.58|10|log level is 50
08:56:39.88|10|your system number is 12151
08:56:39.90|20|dumping configuration:
[def] ALLOWIP <*>
[def] DENYIP <>
[def] HTTPBASE <>
[def] HTTPZIP <HTTPZIP>
[def] LOGCONSOLE <%>
[def] LOGFILE <*>
[def] LOGFORMAT <76>
[def] LOGLEVEL <50>
[def] LOGMAXDUMP <100>
. . .
14:57:11.72|50|<10.18.24.11:33340 "GET /testmid.html HTTP/1.1"
14:57:11.76|50|>10.18.24.11:33340 200 503 "$ghs2.comfhtml.testmid"
14:57:12.16|50|<10.18.24.11:33341 "GET /butler.jpg HTTP/1.1"
14:57:12.18|50|>10.18.24.11:33341 200 5812 "$ghs2.comfhtml.butler"
14:57:12.21|50|<10.18.24.11:33342 "GET /paddle.jpg HTTP/1.1"
14:57:32.56|50|>10.18.24.11:33342 200 360139 "$ghs2.comfhtml.paddle"
14:57:44.02|50|<10.18.24.11:33347 "GET /testxxx.html HTTP/1.1"
14:57:44.03|50|>10.18.24.11:33347 404 0 "$ghs2.comfhtml.testxxx"

To interpret NSSL log output when running as web server
General format:

time|loglevel|message

General HTTP log message format:
time|loglevel|<remote_ip:port "http request"

time|loglevel|>remote_ip:port result bytes_returned "filename"

Line:
14:13:11.72|50|<10.18.24.11:33340 "GET /testmid.html HTTP/1.1"

Meaning:

NSSL received HTTP GET request for URL "testmid.html" which was initiated from IP
address 10.18.24.11 and port 33340

Line:
14:13:11.76|50|>10.18.24.11:33340 200 503 "$ghs2.comfhtm.testmid"

Meaning:

the above request completed successfully (HTTP result 200), the returned file
"$ghs2.comfhtm.testmid" has 503 bytes

Lines:

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 101

14:15:44.02|50|<10.18.24.11:33347 "GET /testxxx.html HTTP/1.1"

14:15:44.03|50|>10.18.24.11:33347 404 0 "$ghs2.comfhtm.testxxx"

Meaning:

the request failed with HTTP error 404 "file not found"

Command Interface NSSLCOM
Starting with Release S40_1031 and functionally being enhanced in later
versions, NSSL is delivered with a command interface NSSLCOM. Using
NSSLCOM, you can:

• get an overview of the status of NSSL

• look at the sessions which are currently open, get detailed information about single
sessions (limited to certain run modes)

• view and change the following parameters (please refer to the "NSSL Parameter
Reference" for the meaning of the parameters):

o ALLOWCERTERRORS

o ALLOWIP

o CONTENTFILTER

o DENYIP

o LOGCONSOLE

o LOGEMS

o LOGFILE

o LOGFORMATCONSOLE

o LOGFORMATFILE

o LOGFORMATEMS

o LOGLEVELFILE

o LOGLEVELCONSOLE

o LOGLEVELEMS

o LOGMEMORY

o MAXSESSIONS
(only in applicable run modes)

o TRUST
(only in run modes ending with a "C" and in run mode
EXPANDS)

• execute the following additional commands

o LOGMESSAGE

o RELOAD CERTIFICATES

o SSLINFO

102 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

 Usage of NSSLCOM: a Sample Session
The usage of NSSLCOM is similar to the HP PATHCOM component. You
connect to an existing NSSL instance using the OPEN command, then you
issue commands against that instance of NSSL. The HELP command will
give you a brief overview of the supported commands.

The following example session shows the following:

1 Start of NSSLCOM, connect to an NSSL instance running with
the process name "$NSSL"

2 Use the STATUS command to view the current status of NSSL

3 Use the SHOW command to view the current settings of
LOGLEVEL, LOGCONSOLE, LOGFILE and LOGMEMORY

4 Use the SET command to change the value of the LOGLEVEL
parameter:

15> NSSLCOM $NSSL

GFTCOM^H16^06FEB03

OPEN $NSSL

% status

status

NSSL version T9999G06_15Sep2003_comForte_SSLD_S40_1031

Startup configuration:

[def] ALLOWIP <*>

[def] CACERTS <CACERT>

[def] CIPHERSUITES <0.4,0.10,0.5>

[def] DELAYRECEIVE <0>

[def] DENYIP <>

[def] LICENSE <LICENSE>

[par] LOGCONSOLE <*>

[run] LOGFILE <lproxysl>

[def] LOGFORMAT <76>

[def] LOGLEVEL <50>

[def] LOGMAXDUMP <100>

[def] LOGMAXFILELENGTH <20000>

[def] LOGMEMORY <0>

[def] MAXVERSION <3.1>

[def] MINVERSION <3.0>

[run] PORT <32005>

[def] RANDOMFEED <64>

[def] SERVCERT <SERVCERT>

[def] SERVKEY <SERVKEY>

[def] SERVKEYPASS <??11??>

[def] SLOWDOWN <0>

[def] SUBNET <$ZTC0>

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 103

[def] TARGETHOST <127.0.0.1>

[run] TARGETPORT <65023>

[def] TARGETSUBNET <$ZTC0>

[def] TESTWRONGDATASOCKET <0>

PROXYS mode

 active sessions right now: 3

 maximum number of active sessions: 25

current heap size: 2506752

current mem pages: 115

Root Certificate Info:

MD5 fingerprint <4DFF502FD33EB41911ACE1943DB3DCCA>

SHA-1 fingerprint <A71418323DDCD3140460125D3321503EB2356FE9>

% show

show

LOGLEVEL 50

LOGFILE lproxysl

LOGCONSOLE *

LOGMEMORY 0

% set loglevel 30

set loglevel 30

log level was set to 30

% exit

exit

16>

Supported Commands
The following commands are supported:

• OPEN <processname>: connects to an instance of NSSL running. The process
name may also be supplied as runtime parameter as shown in the example above

• HELP: lists supported commands

• STATUS: shows current status. This includes the display of the following
information:

o The startup configuration of NSSL.

o The current configuration of NSSL. The current configuration
will differ from the startup configuration when SET

104 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

commands have been used from within NSSLCOM to
change values.

o In run modes ending with an "S", the fingerprint of the root
certificate will be displayed.

o The number of sockets as well as the CPU ms used by
NSSL will be displayed.

• SHOW: shows current values of parameters which can be altered using
NSSLCOM

• SET <parameter> <value>: changes a parameter

• SSLINFO: displays the local certificate chain when NSSL is running as SSL
daemon

• RELOAD CERTIFICATES: changes the server certificate chain without having to
restart SWAP

• CONNECTIONS [,DETAIL]: display on overview of the current open connections
of NSSL1

• CONNECTIONS, STATS: displays an extended usage statistics for the run modes
PROXYS, PROXYC and PROXY. This statistic will yield information on how many
different remote IP addresses are connecting to NSSL.

• INFO CONNECTION: displays detailed information about a single connection1

• RENEGOTIATE CONNECTION: forces SSL key renegotiation for a single
connection1

• LOGMESSAGE <level> <text>: a log message with the level and text specified will
be generated. This allows to test the current log settings1.

• ROLLOVER LOGFILE: a log file rollover will be enforced regardless of the current
size of the log file1.

Multiple commands can be concatenated with semicolons in-between.

Command Reference for CONNECTION Commands
In the run modes TELNETS, PROXYS, PROXYC, MQS, MQC, ATTUNITYS,
FTPS and FTPC NSSL will have a set of TCP/IP connections open during
normal operation. The number of open connections can very between zero
and several hundred.

Starting with NSSL release 1040, NSSL can display some information about
those connections in any of the run modes above. For the run modes HTTP
and HTTPS this is not possible.

CONNECTIONS
The CONNECTIONS command displays an overview of all currently open
connections handled by NSSL. The following example shows the output of
NSSL running in TELNETS mode with three connections handled by NSSL:

1 These commands are not supported in all run modes of SWAP.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 105

% connections
connections
| Port|--------remote connection----------|----------local connection--
-------|
| 3625|10.0.0.198:8989<--10.0.1.24:2000 |127.0.0.1:3625--
>127.0.0.1:23 |
| 3627|10.0.0.198:8989<--10.0.1.24:2010 |127.0.0.1:3627--
>127.0.0.1:23 |
| 3626|10.0.0.198:8989<--10.0.1.24:2002 |127.0.0.1:3626--
>127.0.0.1:23 |
%

Note: The first column contains the local port of the NonStop side of the
NSSL connection. This number is used to access an individual session with
the INFO CONNECTION or RENEGOTIATE CONNECTION commands.

CONNECTIONS, DETAIL
The CONNECTIONS, DETAIL command displays the list of connection,
however it adds some additional information to each line. The output of the
command is rather wide so it is recommended to view the output with a
terminal emulator displaying 132 characters per line:

% connections, detail
connections, detail
---------------remote connection-------------	---------------local connection--------------	#HS	First Handshake	Last Handshake
10.0.0.198:8989<--10.0.1.24:2000	127.0.0.1:3625-->127.0.0.1:23	2	05Aug04,21:26:23	05Aug04,22:38:07
10.0.0.198:8989<--10.0.1.24:2010	127.0.0.1:3627-->127.0.0.1:23	1	05Aug04,21:27:06	05Aug04,21:27:06
10.0.0.198:8989<--10.0.1.24:2002	127.0.0.1:3626-->127.0.0.1:23	2	05Aug04,21:26:21	05Aug04,22:34:10
%

The content at the right end of the display is the abbbreviated content of the
section "SSL handshake information" in the result of the INFO
CONNECTION command covered in the next paragraph.

INFO CONNECTION
The INFO CONNECTION command displays detailed information about a
single session as in the following example:

% info connection 3625
info connection 3625
accepting socket:
=================
 <Sec rem acc PROXY>[TLS_SERVER](0/1): 10.0.0.198:8989<--10.0.1.24:2000
connecting socket:
==================
 <Pln loc conn PROXY>: 127.0.0.1:3625-->127.0.0.1:23
peer certificate information:
=============================
 issuer=/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98/CN=VeriSign C

lass 1 CA Individual Subscriber-Persona Not Validated
subject=/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98/OU=Persona Not

Validated/OU=Digital ID Class 1 - Microsoft Full Service/CN=Thomas R. Burg/emailAddress=thomasburg@web.de
not_valid_before=Feb 20 00:00:00 2004 GMT
not_valid_after=Feb 19 23:59:59 2005 GMT
md5=C7D442A51F7790721E3F36C383E58DF5
SSL handshake information:
==========================
 1 SSL handshakes; First at 05Aug04,21:26:23, Last at 05Aug04,21:26:23
%

The command displays details about:

• Accepting socket: that’s the socket of the application which connects to NSSL. For
instance in TELNETS mode, that is the connection to the remote client using SSL

106 • Configuring and Running NSSL NSSL Server - NonStop SSL Server

• Connecting socket: that’s the socket on which NSSL connects to the target
application. In TELNETS mode, that is the connection to TELSERV

• Peer certificate information: if the accepting socket in TELNETS or PROXYS mode
has sent a client certificate, the contents are displayed here. See section "To have
NSSL require the SSL Client send a certificate" for details on enforcing client
authentication.

• SSL handshake information: displays the number of SSL handshakes on the
accepting socket and the timestamp of the first and last handshake.

RENEGOTIATE CONNECTION
The SSL protocol allows both parties to kick off a new SSL handshake to
refresh the session keys. The RENEGOTIATE CONNECTION command lets
NSSL do that from the server side. The following two log messages show
that a renegotiation has been succesful.

22:34:08.19|50|T3|session 10.0.0.198:8989<--10.0.1.24:2002: SSL renegotiation starting
22:34:10.35|50|T3|session 10.0.0.198:8989<--10.0.1.24:2002: cipher suite TLSv1/RC4-MD5 negotiated

The output of the INFO CONNECTION command will display the fact that a
new handshake has happened as well:

%info connection 3625
info connection 3625
accepting socket:
=================
 <Sec rem acc PROXY>[TLS_SERVER](0/1): 10.0.0.198:8989<--10.0.1.24:2000
connecting socket:
==================
 <Pln loc conn PROXY>: 127.0.0.1:3625-->127.0.0.1:23
peer certificate information:
=============================
 issuer=/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=www.verisign.com/repository/RPA Incorp. By Ref.,LIAB.LTD(c)98/CN=VeriSign C

lass 1 CA Individual Subscriber-Persona Not Validated
subject=/O=VeriSign, Inc./OU=VeriSign Trust Network/OU=www.verisign.com/repository/RPA Incorp. by Ref.,LIAB.LTD(c)98/OU=Persona Not

Validated/OU=Digital ID Class 1 - Microsoft Full Service/CN=Thomas R. Burg/emailAddress=thomasburg@web.de
not_valid_before=Feb 20 00:00:00 2004 GMT
not_valid_after=Feb 19 23:59:59 2005 GMT
md5=C7D442A51F7790721E3F36C383E58DF5
SSL handshake information:
==========================
 2 SSL handshakes; First at 05Aug04,21:26:23, Last at 05Aug04,22:38:07
%

SSLINFO Command
The NSSLCOM command SSLINFO will display the local certificate chain
configured through the parameters SERVCERT and CACERTS when NSSL
is running as an SSL daemon.

RELOAD CERTIFICATES Command
The NSSLCOM command RELOAD CERTIFICATES allows for changing the
server certificate chain without having to restart NSSL. The command has
two possible syntaxes:

1. If used without an additional parameter, the command
assumes the configuration parameters for the new certificate
chain (SERVCERT, SERVKEY, SERVKEYPASS,
CACERTS) are present in the currently configured CONFIG2
file. If no CONFIG2 file has been configured for startup, the
command will fail.

NSSL Server - NonStop SSL Server Configuring and Running NSSL • 107

2. If used with an additional parameter containing the filename
of a configuration file in double quotes, the new values will
be loaded from that file.

Some considerations for the command:

• The success or failure of the command will be returned to NSSLCOM. If the
command fails, the prior certificate chain will remain active.

• NSSL does some limited tests on the new certificate chain. However, just as
within startup of NSSL, some errors in the certificate chain cannot be detected as
NSSL. It is thus recommended to immediately check the new certificate chain with
the SSLINFO command as well as with connecting a new client.

• If the syntax b) of the command is used, the changes will not be permanent unless
the startup configuration of NSSL is updated with the changes. It is highly
recommended to always keep the certificate chain information in a CONFIG2 file
and to use syntax a) as in that case the changes will be permanent without further
action.

108 • Web Server Reference NSSL Server - NonStop SSL Server

Web Server Reference

Supported MIME Types
The NSSL HTTP server will derive the mime type of a requested resource
from the filename extension. The supported MIME types are:

extension Mime type

bmp image/bmp

cab application/octet-stream

class application/octet-stream

dat text/plain

gif image/gif

htm text/html

html text/html

jar application/octet-stream

jnlp application/octet-stream

jpg image/jpg

txt text/plain

If a requested resource does not match a supported extension,
"application/octet-stream" is used as default.

Serving HTTP Contents
An NSSL web server satisfies browser requests by the following
mechanisms:

• mapping the requested URL to a file contained in a ZIP archive.

• mapping the requested URL to a disk file

Upon receipt of a HTTP GET request NSSL will first search for the resource
in the ZIP archive that was specified in the NSSL configuration. If the file is
not found, NSSL will then search for a disk file matching the request.

NSSL Server - NonStop SSL Server Web Server Reference • 109

Serving HTTP Contents from a ZIP Archive
The Guardian file system has no hierarchical structure and does only support
file names 8 character long without extension. HTTP content files typically
have long file names and are organized in hierarchical folders. To overcome
the restrictions of the Guardian file system, NSSL can serve HTTP contents
from a standard ZIP file containing the required files with their full (long) path
names. Thus, the HTTP contents can be easily developed and organized on
a standard workstation. For deployment with NSSL the required files simply
need to be packed with a standard ZIP tool into a single archive which then is
transferred to the NonStop server.

 Note: NSSL does not support ZIP archives containing compressed files.
Make sure to turn off compression when packing the HTTP content archive.

The ZIP archive NSSL returns files from is configured with the HTTPZIP
parameter. NSSL is delivered with a default archive containing a welcome
page and this manual in HTML format for on-line reading.

NSSL will map requested URLs to a zip file by matching resource specified in
the HTTP GET request to the full path names of the files contained in the ZIP
archive. This file name comparison is case insensitive.

Example
The URL

http://172.3.5.7:8080/ovweb/NewYork/mytandem.html

will be received by an NSSL HTTP server running on 172.3.5.7, port 8080,
as the following HTTP request:

GET /ovweb/NewYork/mytandem.html

NSSL will search the ZIP archive for the file:
ovweb/NewYork/mytandem.html

 Note: As NSSL will use the path information of a file in the ZIP archive, it is
vital to specify the correct URL for NSSL to be able to locate it. If a given
URL does not match any file WITH path information it will return error 404
(file not found). When creating a ZIP archive, please make sure that any path
information you included resemble the URLs you intend to use for file
access.

To Create a HTTP Contents ZIP File for NSSL

1 On your workstation, create a new directory as your HTTP
content base directory.

2 Move all your required HTTP content files (HTML, GIF, JAR,
CAB, ...) to this directory. If your content is organized
hierarchically, create the appropriate sub-directories in the base
directory.

3 To make sure that all links within your content files are correct
you may want to test this locally.

110 • Web Server Reference NSSL Server - NonStop SSL Server

4 Using your favorite zip tool, pack the files in the base directory
including the subfolders into an archive. Make sure to turn off
compression and to include the relative path information.

5 Using your favorite file transfer tool, transfer the ZIP archive to
the NonStop system NSSL is installed on. Make sure to transfer
the file in binary format.

6 Start an NSSL HTTP server with the HTTPZIP configuration
parameter referring to your ZIP archive, e.g.:

HTTPZIP $DATA.NSSL.MYZIP

Mapping URLs to Disk Files
If a resource cannot be found in the HTTPZIP archive (or if no zip archive
exists), NSSL will try to match the resource to a Guardian file name. This is
done by removing the file name extension and the separating dot.

The location where files are searched is controlled by the HTTPBASE
parameter. If set, NSSL will return files from the given $volume.subvolume. If
the HTTPBASE parameter is omitted, no files are returned from disk.

Example
The URL

http://172.3.5.7:8080/mytandem.html

will be received by an NSSL HTTP server running on 172.3.5.7, port 8080,
as the following HTTP request:

GET /mytandem.html

With the HTTPBASE parameter set to "$disk1.myhttp", the request is
mapped to the NonStop Guardian file name

$disk1.myhttp.mytandem

 Important Note: HTML files may be stored on the NonStop system either as
EDIT files (file code 101) or as binary files (file code 0). EDIT files have a
much higher processing overhead when served as HTML pages, therefore
Crystal Point recommends to only store short files as EDIT files. To convert
an EDIT file in a binary file, please proceed as follows:
1) Do an ASCII FTP download of the EDIT file to a PC
2) Do a Binary (!) FTP upload of the file back to the NonStop system. This
will result in a file with file code 0 which is then ready to be processed by
NSSL.
The same performance gain can be achieved by including the EDIT file in a
HTTPZIP archive, see section "Serving HTTP contents from a ZIP archive"
within this chapter.

NSSL Server - NonStop SSL Server SSL Reference • 111

SSL Reference

Secure Sockets Layer
The SSL (secure sockets layer) protocol is an open, non-proprietary protocol
originally designed by Netscape. It has been standardized by the IETF as
Transport Layer Security (TLS) protocol. SSL has been universally accepted
on the World Wide Web for authenticated and encrypted communication
between clients and servers and is used in millions of browsers around the
world.

The History of SSL
The version numbers of SSL and TLS are somewhat confusing.
Chronologically, the protocols evolved as follows:

• Netscape released SSL 2.0 with the first version of Netscape Navigator in 1994.
SSL 2.0 is nearly obsolete today.

• SSL 3.0 was introduced in 1994 as an enhancement of SSL 2.0. SSL 3.0 is still
used on the Internet on a daily basis, especially due to the fact that Netscape 4.7x
does not support the newer protocol version TLS 1.0.

• TLS 1.0 was published by the IETF in 1999. TLS 1.0 is an enhancement of SSL
3.0 and is meant to replace it in the future. It is supported by all current browsers
(Microsoft Internet Explorer 4.01 and later, Netscape Navigator 6.x, Opera 5.x).
The name "TLS 1.0" is confusing as "1.0" is superior to "3.0" in this case, however
that is the name the IETF people chose. TLS 1.0 may be viewed as "SSL 3.1"
although there is no SSL 3.1 protocol standard.

Summing this up, the protocols evolved as follows where the order is both
chronologically and functionally "upwards": SSL 2.0 --> SSL 3.0 --> TLS 1.0.

SSL Features
The SSL protocol has the following basic properties:

• Privacy
After an initial handshake, client and server agree on a session key which is used
for a symmetric cipher algorithm to encrypt the session's payload. Example
ciphers are RC4, 3-DES or AES.

112 • SSL Reference NSSL Server - NonStop SSL Server

• Mutual Authenticity
Using a public-key cryptography and digital signatures, the SSL protocol allows to
authenticate the server or client before exchanging confidential data.

• Session Integrity
SSL ensures the integrity of the messages exchanged allowing client and server to
verify if it has been modified by an attacker, using a Message Authentication Code
(MAC). Example MAC algorithms are MD5 or SHA.

For more information on SSL we recommend the following reading:

• Stephen Thomas, "SSL and TLS essentials", Wiley Publishing 2000

Implementation Overview

Cipher Suites
NSSL uses the SSL protocol - as used in standard browsers and servers - for
session security. NSSL supports SSL 2.0, SSL 3.0 and the latest version
SSL 3.1, which has been standardized by the IETF as Transport Layer
Security (TLS) protocol. This protocol allows for negotiating cipher suites for
secure exchange of data as well as exchanging the necessary secrets at the
beginning of each session in a way which is particularly strengthened against
replay, insertion and man-in-the-middle attacks.

 Note: we do not recommend using SSL 2.0 as it has some serious design
flaws.

The selection of cipher suites is configurable, in order to make our solution
customizable to the needs of individual security requirements:

• RSA certificate-based key-exchange, where the root ca is validated in the
OutsideView client via fingerprint.

• Either of 3-DES, RC4 or AES as bulk-ciphers.

• Either of HMAC-SHA or HMAC-MD5 as message authentication codes.

• The actual choice of the cipher suite is at the discretion of the server and
configurable.

The key lengths for symmetric encryption are:

• (Triple-DES) 3x56 = 168 bits.

• RC4 = 128 bits

• AES = 128 or 256 bits

The key lengths for message authentication are:

• (HMAC-MD5)= 128 bit

• (HMAC-SHA)= 160 bit

The cipher block chaining mode (CBC) in 3-DES guarantees the utmost security
against replay/insertion as well as brute force attacks. At the current state of
computer technology triple encryption is no longer a (speed) obstacle.

The authenticity of messages is granted by the 160 bit SHA hash algorithm. (HMAC-
SHA) or by the 128 bit MD5 hash algorithm (HMAC-MD5).

NSSL Server - NonStop SSL Server SSL Reference • 113

Modulus lengths of up to 2048 bits are supported for public key values.

Auditing
An indispensable part of every security strategy is Security Auditing. The TLS
protocol defines 23 Alert Messages, which may be sent or received. All these
alerts are handled by NSSL, most of them are fatal. NSSL logs these alerts
e.g. on the console.

Flexibility
A number of technical restrictions (available hardware encryption devices),
jurisdictional restrictions (encryption unlawful in France) patent restrictions
(e.g. RSA was patent protected in the US until 09/2000) and the progress in
crypto-analysis might make it necessary to negotiate different cipher-suites
dependent on the geographic location of the client or as part of change
management. In such a case the NSSL benefits from the flexibility of the TLS
protocol, which allows for negotiating the combination of cryptographic
algorithms (cipher-suites) as part of the handshake. It also might be
adequate to guarantee authenticity of the peer and peer data and not encrypt
the session contents. The version as delivered offers a choice of TLS
standard cipher suites as described above in the paragraph "cipher suite"
and defined in RFC 2246. If there were any need for a change, only the
algorithm would have to be implemented by Crystal Point and the changed
exe and configuration files would have to be distributed, but on TLS level
there would be no change.

X.509 Certificates
Certificates are a form of digital id issued by a certificate authority. A
certificate authority signs a certificate with its private key, vouching for the
correctness of the certificate contents. Certificates used with SSL are
standardized by the X.509 specification. It is possible to built hierarchies of
certification authorities, where the top level authority is called the root CA.
The root CA's certificate is issued by the root CA itself; it is a so called self-
signed certificate.

For SSL, the certificates are used to provide mutual authenticity. Before
establishing a session, clients can authenticate a server to ensure it is
connecting to a trusted site (SSL server authentication). In this case the
server presents its "server certificate" along with the "certificate chain" to the
client. The certificate chain is a series of certificates issued by successive
CAs that reflect the certificate hierarchy up to the root certificate

Vice versa, the server can optionally request the client to present a certificate
for authentication (SSL client authentication, this is currently not supported
by NSSL).

NSSL supports X.509 certificates for server authentication as follows:

• If NSSL is running as SSL server (run modes HTTPS, FTPS, TELNETS,
PROXYS, ATTUNITYS, MQS) NSSL will send the configured server certificates to
the client. It is up to the client to check for the proper server certificates. The
certificates are configured using the parameters SERVKEY, SERVKEYPASS,
SERVCERT and CACERTS, please see in the parameter reference for usage of
those parameters. Please see the next section on how to generate your own
certificates.

114 • SSL Reference NSSL Server - NonStop SSL Server

• If NSSL is running as a SSL client (run modes FTPC, PROXYC, MQC), the
TRUST parameter is used to configure a list of trusted root certificates. It is up to
the SSL server to send the certificates, NSSL will validate the integrity of the
certificate chain and check if the root certificate's fingerprint is configured in the
TRUST parameter. Note that the default value * for the TRUST parameter is
interpreted as "do not validate the remote certificate".

The Certificate Tools
NSSL includes several tools, which allow the generation of the required key
and certificates files or to apply for a certificate. With these tools you can:

• generate a root CA certificate

• submit a Certificate Signing Request

• issue a certificate with your own root CA

• convert a BASE64 encoded certificate received from a CA to binary format

• view a certificate

The certificate tools are provided as intuitive "wizards", that will guide you
step-by-step though each task. The tools can be easily accessed with your
web browser by following the "Certificate Tools" link on the default NSSL
HTTPS welcome page.

To invoke the Certificate Tools
1 make sure you have started an NSSL HTTP or HTTPS server

with the default HTTPZIP archive included with the software.

2 point your browser to your NSSL server welcome page.

3 follow the link to the Certificate Tools.

4 select the appropriate tool that will guide you through the desired
task.

The Public/Private Key Pair
Regardless of how you choose to obtain a certificate, you will need to
generate a private/public key pair. The private key is stored in encrypted
format protected by a pass phrase in a file complying to the PKCS#8
standard. This file is later passed to a secure NSSL process with the
SERVKEY/CLIENTKEY parameter. For NSSL to be able to decrypt the
private key, the password must be specified by the
SERVKEYPASS/CLIENTKEYPASS parameter.

 Warning: Do not give other users access to your private key! In general,
private keys should be encrypted for security. The longer your pass-phrase,
the better the protection of your keys.

The public key matching the private key is incorporated into the certificate
along with your identification data (the server's X.509 "distinguished name").

NSSL Server - NonStop SSL Server SSL Reference • 115

The Certificate Signing Request
To obtain a certificate you submit your public key along with some
identification data to a Certificate Authority. This so called Certificate Signing
Request (CSR) is used by the CA to generate your certificate and sign it with
the CA's own private key. CA's expect the CSR to adhere to a certain format.
The most widely used format is specified by the PKCS#10 standard.

Obtaining a Certificate from a Third Party CA
In case you choose to obtain a certificate from an internal or external
(commercial) CA you would generate a private key and a PKCS#10 CSR.
You will then submit the CSR to the CA, typically by pasting it in BASE64-
encoded format to the CA's web site, or sending it via email. The CA will then
return the signed certificate to you, typically also in BASE64 encoded format
attached to an email. The BASE64-encoded certificate can then be
converted to binary certificate file, which is passed to NSSL with the
SERVCERT/CLIENTCERT parameter.

NSSL needs to send the root CA certificate along with the server/client
certificate to SSL clients/server for validation. Typically, the third party CA will
provide their public root certificate that was used to sign the certificate. To be
able to pass the root CA certificate to NSSL with the CACERTS parameter,
the root CA certificate file need to be uploaded to the system you have NSSL
installed on. If you received the root CA certificate in BASE64-encoded
format, you may convert for NSSL usage just like a BASE64-encoded
certificate.

To Submit a Certificate Signing Request for a Certificate

1 Point your browser to the Certificate Tools page.

2 Select the "Submit a Certificate Signing Request" tool.

3 When prompted to store the private key, choose a suitable name
for the key file (e.g. SERVKEY.DER).

4 When prompted for the "distinguished name" to be included with
the CSR, fill in the required values, e.g.

Country USA

State or Province WA

Locality Bothell

Organization Crystal Point

Organizational Unit Development

Common Name devserver.crystalpoint.com

Email dev@crystalpoint.com

5 Submit the generated BASE64-encoded PKCS#10 CSR to a
Certificate Authority of your choice, e.g. by pasting it to your CA's
web site or attaching it to an Email.

6 Wait for the CA to return the certificate generated from your
CSR.

116 • SSL Reference NSSL Server - NonStop SSL Server

To Convert the BASE64-Encoded Certificate Received from
a CA

1 Point your browser to the Certificate Tools page.

2 Select the "Receiving a Certificate" tool.

3 When prompted for the certificate, paste the BASE64-encoded
certificate received from your CA into the form.

4 When prompted to store the certificate, choose a suitable name
for the certificate file (e.g. SERVCERT.DER). You may want to
store the certificate in the same directory where you stored your
private key file.

Acting as Your Own CA
If you choose to issue a certificate as your own CA, you would need to
generate a root CA certificate and private key. The root CA certificate is a
"self-signed" certificate as it is signed with the root CA's own private key.

Warning: Do not give other users access to your root CA private key! If this
key is compromised, malicious users can create certificates that will appear
to be signed by your CA certificate. In general, private keys should be
encrypted for security. The longer your pass-phrase, the better the protection
of your keys. The root CA's private key should also be stored at a secure
place. For example, you could store it on a removable disk that you can lock
away.

Using the root CA private key and certificate you would then generate a
certificate from a previously created CSR. In other words, you would perform
the same task as a third party CA.

To Issue a Certificate

1 Point your browser to the Certificate Tools page. If you have
already generated a root CA certificate you may continue with
step 7.

2 Select the "Generate a root CA Certificate" tool.

3 When prompted to store the private key, choose a suitable file
name for your root CA key (e.g. CAKEY.DER). You may prefer
to store the root CA key file on a removable media for utmost
security.

4 When prompted for the "distinguished name" to be included with
the root certificate, fill in the required values, e.g.

Country USA

State or Province WA

Locality Bothell

Organization Crystal Point

Organizational Unit Development

NSSL Server - NonStop SSL Server SSL Reference • 117

Common Name devca.crystalpoint.com

Email dev@crystalpoint.com

Serial No 1

Valid Until 01/01/2010

5 When prompted to store the generated root certificate, choose a
suitable file name (e.g. CACERT.DER).

6 After finishing the generation of s root CA certificate select the
"Submit a Certificate Signing Request" tool.

7 When prompted to store the private key, choose a suitable name
for the key file (e.g. SERVKEY.DER).

8 When prompted for the "distinguished name" to be included with
the CSR, fill in the required values, e.g.

Country USA

State or Province WA

Locality Bothell

Organization Crystal Point

Organizational Unit Development

Common Name devserver.crystalpoint.com

Email dev@crystalpoint.com

9 After the CSR is generated, continue with the "Issue a
Certificate" tool. The form expecting a BASE64-encoded CSR
will automatically show the CSR you had created before.

10 When prompted to load the root CA's private key and certificate,
enter the filenames of root CA files that you the previously stored
on your local system. Don't forget to enter the password for your
CA private key file.

11 After you have successfully generated the certificate from the
CSR, continue with the "Receiving a certificate" tool. The form
expecting a BASE64-encoded certificate will automatically show
the certificate you have created before.

12 When prompted to store the certificate, choose a suitable name
for the certificate file (e.g. SERVCERT.DER). You may want to
store the certificate in the same directory where you stored your
private key file.

Configuring SSL for Production Running as SSL Server
The default installation of NSSL is streamlined to enable an easy setup and
immediate testing. NSSL is delivered with a set of certificate and key files
which can be used out-of-the-box for testing and evaluation purposes.

For a secure production installation, it is recommended to configure NSSL to
use your own certificate and key files. Using the default files and settings for
a production installation may compromise the security of the system.

This section will describe how to generate your own certificates using the
Certificate Tools supplied with NSSL. It also explains how NSSL is

118 • SSL Reference NSSL Server - NonStop SSL Server

configured to use these certificates for a production installation. For a more
detailed explanation about the concept of certificates, see the section "X.509
Certificates" of this chapter.

Using Your Own Server Key and Certificate Files
For a production installation, it is required to use your own keys and
certificates. You will need at least the following components to configure SSL
Server Authentication with your own production certificates:

1 a private key (protected by a pass phrase)

2 a server certificate incorporating the public key matching the
private key

3 the certificate of the root CA that issued (i.e. signed) the server
certificate

To obtain the certificates required for SSL server authentication you may
choose one of the following options:

• Purchase a server certificate from a commercial CA

• Obtain a server certificate from an existing internal Certificate Authority of your
organization.

• Be your own (root) Certificate Authority to issue a server certificate.

Which option you choose for your production system depends on the nature
of your application, the type of users accessing it and on the existing security
infrastructure.

If your organization already maintains an internal public key infrastructure
(PKI), you would want to obtain a server certificate from an internal CA.

If your server is accessed by external internet users (e.g. customers) that do
not know your organization yet, you would probably purchase a server
certificate. Remember certificates are used to establish trust. The users trust
the CA you purchased your server certificate from, while the CA vouches for
your certificate's correctness.

Today's browsers (such as Microsoft Internet Explorer or Netscape
Navigator) are delivered with the root certificates of commercial CAs such as
Verisign or Thawte, which are "trusted" automatically if an SSL connection is
made. Thus, if your server certificate is signed by a "trusted" CA, the browser
will not display a warning message that the server certificate cannot be
validated. For an internal application, this kind of automatic trust may not be
desirable. In fact, using a commercial root CA could even present a security
hole. If, for example, an OutsideView SSL connection to an NSSL TELNETS
proxy is authenticated with a commercial root CA, a man-in-the-middle attack
could be launched using another server certificate purchased from the same
CA.

If you want to secure access to an application for internal users only, you
would probably prefer using your own root CA to issue the server certificate.
As your users know your organization already, they can choose to trust your
root CA that issued the server certificate. If the users access NSSL with their
browser, they will be able to look at the certificates, which will allow them to
validate if they are really originating from a trusted source (your
organization), for example by checking the certificate's fingerprint. They
could then add your root CA certificate to their browser's list of trusted CAs.

NSSL Server - NonStop SSL Server SSL Reference • 119

TELNETS clients would also authenticate your NSSL TELNETS proxy using
your root CA's fingerprint. In case of OutsideView, you would specify your
root CA's fingerprint in the HTML used to deliver the applets. This would
prevent man-in-the-middle attacks as you have full control over the server
certificate generation.

Starting NSSL for Production as SSL Server
After following the instructions in the previous sections to obtain a server
certificate, you should have the following files on your local system:

• the server private key file (e.g. SERVKEY.DER)

• the server certificate (e.g. SERVCERT.DER)

• the root CA certificate(s) that were used to sign the server certificate. This could
be a single certificate (e.g. CACERT.DER) or a certificate chain consisting of
multiple certificates (e.g. VERIROOT.DER and VERIINT.DER).

As these files are required for NSSL startup, you will need to upload them to
the NonStop system NSSL is installed on.

Once the files have been transferred to the NonStop system, NSSL can be
started to use you production keys and certificates by specifying the
appropriate parameters.

To Have NSSL Require the SSL Client Send a Certificate
NSSL supports client authentication when running in SSL server mode
(PROXYS, FTPS, TELNETS, HTTPS, MQS, ATTUNITYS). The behavior is
controlled by the TRUST parameter (please note: the parameter has different
meanings for NSSL running in server or client mode).

TRUST set to "*" (default) will disable the checking, thus no client cert will be
required.

When TRUST contains a certificate filename this certificate will be sent to the
client. The client will send back a certificate signed by the one sent to it. If the
client sends no certificate or an invalid one, the connection will be rejected.

To Start NSSL with Your Own Certificate and Private Key

1 Using your favorite file transfer program, transfer the following
files to your NonStop system:

• the server private key file (e.g. SERVKEY.DER)

• the server certificate (e.g. SERVCERT.DER)

• the root CA certificate(s) (e.g. CACERT.DER or
VERIROOT.DER and VERIINT.DER).

Transfer the files in binary mode, stripping the filename
extension. You may want to place the files into a separate
GUARDIAN subvolume (e.g. $SYSTEM.MYCERT)

2 At the command prompt, issue the following command:
RUN NSSL/NAME $HTTPS/ HTTPS; SUBNET $ZTC0; PORT 8443;
 SERVKEY $SYSTEM.MYCERT.SERVKEY; SERVKEYPASS mysecret
 SERVCERT $SYSTEM.MYCERT.SERVCERT; CACERTS $SYSTEM.MYCERT.CACERT

120 • SSL Reference NSSL Server - NonStop SSL Server

where

• the keyword "HTTPS" designates the NSSL run mode as a
secure web server.

• the parameter "SUBNET" specifies the TCP/IP process
NSSL should run on. You may omit this parameter, in which
case NSSL will assume $ZTC0 as default.

• the parameter "PORT" reflects the port number NSSL should
listen on for HTTPS connections. Note, that to start an NSSL
secure web server on the well known HTTPS port (443),
SUPER group rights will be required.

• the parameter "SERVKEY" points to your server private key
file.

• the parameter "SERVKEYPASS" specifies the pass phrase
you used for private key encryption.

• the parameter "SERVCERT" points to your server certificate
file.

• the parameter "CACERT" points to the certificate file(s) of
the root CA that issued your server certificate..

3 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

Configuring SSL for Production as SSL Client
In run modes PROXYC and MQC NSSL will be an SSL client. This section
only is relevant for those run modes.

The default installation of NSSL is streamlined to enable an easy setup and
immediate testing and will not verify the remote certificate for authenticity.

For a secure production installation, it is recommended to configure NSSL to
verify the remote certificates using the TRUST parameter. Not doing so may
compromise the security of the system.

To Start NSSL with Verification of the Remote Certificate

1 Determine the MD5 fingerprint of the root certificate of the
remote systems you want to communicate with. As an example,
we use the following MD5 fingerprint:

F9E29DFC22D687C20C353BC2E37F959A

2 Configure the fingerprint in the TRUST parameter such as in the
following startup command:

RUN NSSL/NAME $FTPC/ FTPC; &
 TRUST F9E29DFC22D687C20C353BC2E37F959A

3 NSSL will now start with the parameters specified on the
command line. It will output initialization messages to your
terminal. Please check these messages for any errors.

NSSL Server - NonStop SSL Server SSL Reference • 121

4 If you have multiple systems you want to communicate with
which have different fingerprints, you can enter a list of comma-
separated values for the TRUST parameter.

To Have NSSL Send a certificate to the SSL Server
If Client Authentication is required NSSL can send a client certificate or a client
certificate chain to the server.

 Comment: See chapter "The Certificate Tools" or the previous chapter
"Configuring SSL For Production Running As SSL Server" to find out more about
how to configure certificates with NSSL.

The parameters could be set to cover 3 scenarios:

1 If CACERTS and CLIENTCERT are set to ‘*’, NSSL will sent NO
certificate to the server (this is the default setting).

RUN NSSL/NAME $PROC/ PROXYC; …..;
 CACERTS *; CLIENTCERT *; ….

2 To send a self-signed certificate to the server CACERTS has to
be set to ‘*’ and CLIENTCERT/CLIENTKEY/CLIENTKEYPASS
must point to a valid self-signed certificate.

RUN NSSL/NAME $PROC/ PROXYC; …..;
 CACERTS *;
 CLIENTKEY $SYSTEM.MYCERT.CLNTKEY; CLIENTKEYPASS mysecret
 CLIENTCERT $SYSTEM.MYCERT.CLNTCERT;

3 If CACERTS contain the signing certificate(s) NSSL will sent the
whole certificate chain to the server.

RUN NSSL/NAME $PROC/ PROXYC; …..;
 CACERTS $SYSTEM.MYCERT.CACERT;
 CLIENTKEY $SYSTEM.MYCERT.CLNTKEY; CLIENTKEYPASS mysecret
 CLIENTCERT $SYSTEM.MYCERT.CLNTCERT;

122 • SSL Reference NSSL Server - NonStop SSL Server

TLS Alerts
If a TLS Alert happens on an SSL-encrypted session, the TLS alert number
will be logged. The following message is an example for a log message of
this type: a plain Telnet client tried to connect on the encrypted socket,
resulting in a TLS alert "50" (DecodeError).

13:37:18.53|30|TLS Alert: 50

The following table contains the TLS alert numbers for TLS 1.0. For more
information about the individual alerts, please refer to the TLS specification
RFC 2246 (available under http://www.ietf.org).

TLS Alert Number TLS Alert name

0 close_notify

10 unexpected_message

20 bad_record_mac

21 decryption_failed

22 record_overflow

30 decompression_failure

40 handshake_failure

42 bad_certificate

43 unsupported_certificate

44 certificate_revoked

45 certificate_expired

46 certificate_unknown

47 illegal_parameter

48 unknown_ca

49 access_denied

50 decode_error

51 decrypt_error,

60 export_restriction

70 protocol_version

71 insufficient_security

80 internal_error

90 user_canceled

100 no_renegotiation

http://www.ietf.org/

NSSL Server - NonStop SSL Server Performance Considerations • 123

Performance Considerations

Introduction
"There is no such thing as a free lunch" – using NSSL to encrypt Telnet, FTP
or other traffic will consume some CPU cycles on your NonStop host. The
natural question "how many CPU does it cost to run encryption" has no
simple answer, it will depend on many factors:

• In general:

o how many SSL connections are created – the initial setup of
an SSL session involves several public-keys operations,
which require some CPU intensive calculations.

o the key sizes used for the public/private key – using a more
secure 1024 bit key pair will cause more overhead for the
initial setup than a 512 bit RSA key pair.

o the selected cipher for bulk encryption – for example a
cipher using 168 bit 3DES will consume more CPU cycles
than a 128 bit RC4 based cipher suite.

• For Telnet traffic:

o the number of concurrent sessions – this simply means how
many parallel Telnet sessions are running.

o the throughput on each individual session – a TACL waiting
quietly for user input will consume no CPU at all where as a
FILEINFO $*.*.* will result in a lot of traffic across your
network which needs to be encrypted.

o the nature of the host application – a lot of small transfers
from and to the terminal will generate more SSL protocol
overhead than a few large transfers.

• For HTTP traffic:

o number of HTTP requests – how many people are
downloading HTML content.

o type of the individual request – is it a download of a short
Web page or a download of a huge Java applet.

• For FTP and MQ traffic:

o the size of the transmitted data.

• For EXPAND traffic:

o the volume and packet size of the transmitted data

124 • Performance Considerations NSSL Server - NonStop SSL Server

So basically there is no general answer to the question, it will depend on your
individual system use.

However, some extensive measurements using MEASURE for Telnet traffic
showed that today's NonStop systems aren’t as bad in number crunching
(and that’s what encrypting and decrypting is basically about) as one would
think.

The following sections will show the results of some selected measurements.
The conclusions drawn from these can be used to estimate what
performance behavior you can expect on your system.

Note: Unless noted otherwise, all measurements referred to in this chapter
have been performed on a 2 processor S7600 system with
SSL_RSA_WITH_RC4_128_SHA as selected cipher suite. As of this writing,
no measurements have been made for HTTP traffic. However, we feel that
HTTP traffic is of less relevance than Telnet traffic, because by its nature
HTTP traffic is less repetitive than terminal traffic through.

Performance Analysis of SSL Session Establishment
The performance impact of the initial SSL session setup should be viewed
separately. As explained before, establishing an SSL session involves
several CPU intensive public key operations. The amount of CPU cycles
consumed is depending on the key sizes used.

The following table shows the CPU consumption of an SSL session connect
(without any data transfer taking place) for the various key sizes (measured
on a S7600):

Key size [bits] Approximate CPU consumption
on S7600 [milliseconds]

512 43

1024 120

2048 581

The exponential increase of the CPU consumption with the key size is
related to the nature of the RSA public key operations. Remember, "there is
no such thing as a free lunch". You should carefully analyze what key size
provides a reasonable protection for your application. The selected key size
should be reflecting the value of the key for potential attackers.

It is very hard to predict future developments both in cryptography and
computer technology which makes it next to impossible to tell in advance
what key size will be sufficient in the years to come. We recommend using a
key size of 1024 bits for the time being.

Performance analysis of SSL FTP traffic
To get an indication of the performance of the NSSL when acting as an FTP
proxy the average transfer rate and CPU consumption has been measured
while a file with 50 MB of data has been transferred SSL encrypted several
times via the NSSL. The measurement was done when downloading that file
from a NonStop system onto a PC (FTPS)

NSSL Server - NonStop SSL Server Performance Considerations • 125

The following table shows the result of the measurement (transferring files of
50MB size, using NSSL 1036):

Mode Time
elapsed [s]

CPU time
used [s]

Through-put
[KB/s]

CPU ms/MB
transf.

CPU usage

Unencrypted
(FTPSERV
only)

32 n/a 1526 n/a n/a

RC4-MD5 47,99 11,826 1017 248 25%

RC4-SHA 48,16 12,838 1014 269 27%

DES-CBC3-
SHA

52,04 34,938 938 733 67%

AES128-SHA 48,86 16,58 999 348 34%

Please bear in mind that the measured transfer rate does not only depend on
the performance of the NSSL but also on the network throughput and the
performance of the remote FTP client or server.

Performance Analysis of SSL EXPAND Traffic
The performance impact of adding SSL encryption to EXPAND over IP traffic
will depend on both throughput and individual packet sizes.

The following table shows some results measured on an S86.000 system
with two Pathway server exchanging messages using EXPAND over IP. The
table lists the following values with and without usage of SSL using the
cipher suite RC4-MD5:

• Maximal throughput in Kilobyte per second

• CPU busy value under this throughput

• CPU cost of all involved processes in milliseconds per Megabyte transferred

Msg
Size

 without
SSL

 with
SSL

Send Reply Through-
put
(KByte/s
)

Total CPU
cost
(ms/MB)

CPU
Busy

Through
-put
(KByte/s
)

Total
CPU
cost(m
s/MB)

CPU
Busy

CPU
usage
increase
with
SSL
(ms/MB)

Through
-put with
SSL

0 0 0,0 n/a 26,4% 0,0 n/a 45,3% n/a n/a

64 64 129,1 2056 25,3% 55,0 8544 44,8% 6488 42,6%

128 128 254,5 1032 25,1% 108,7 4313 44,7% 3281 42,7%

256 256 496,9 520 24,7% 210,6 2191 44,0% 1671 42,4%

512 512 899,0 266 22,8% 393,5 1132 42,5% 865 43,8%

1024 1024 1498,8 147 21,0% 694,6 608 40,3% 461 46,3%

2048 2048 2210,9 95 20,0% 1179,8 362 40,7% 267 53,4%

4096 4096 3398,1 47 15,2% 1819,4 251 43,6% 205 53,5%

8192 8192 4916,5 54 25,2% 2560,4 190 46,3% 136 52,1%

126 • Performance Considerations NSSL Server - NonStop SSL Server

16384 16384 6481,8 47 29,3% 1467,3 193 27,0% 145 22,6%

28000 28000 7458,3 45 31,7% 2133,0 194 39,4% 149 28,6%

56000 56000 8404,1 42 33,9% 3843,0 177 65,0% 135 45,7%

Using this table together with MEASURE data of your current expand traffic,
it is possible to estimate the additional CPU usage due to encryption.

Summary
There is no answer to the seemingly simple question: "How much CPU
cycles will 128 bit encryption burn on my system ?". To understand why,
consider asking an automobile expert the question, "How much fuel will I
need for my vacation trip ?" (without giving away more information).
Regardless how much the expert knows about cars and engines, he will not
be able to give an answer unless you tell him:

• the make of the car

• where you want to go

• your driving habits

Experience shows that with Telnet, only the SSL session setup is relevant for
CPU consumption whereas for run modes in which bulk data transfer takes
place (such as encrypting FTP or MQ traffic) both session setup and bulk
transfer may be relevant. The tables listed above should help you in
estimating CPU load.

NSSL Server - NonStop SSL Server Troubleshooting • 127

Troubleshooting

Troubles with the Browser

Browser unable to connect
If your browser cannot connect to the NSSL HTTP(S) server, please check
the following:

• Did NSSL start successfully? Check with SCF STATUS PROCESS for a TCP
LISTEN on the port you specified for NSSL.

• Did you specify the correct URL?

If NSSL has been started with a port other that the well known HTTP or
HTTPS port, make sure to specify the port in the URL, e.g.

http://10.2.3.4:8080/

or
https://10.2.3.4:8443/

Browser displaying garbage page
When connecting to an NSSL HTTPS server with a browser, check if the
requested URL specifies the correct protocol (https://...).

Connection closed by NSSL immediately after
setting-up a secure connection
If the connection is closed immediately after setting-up a secure connection,
you might have forgotten to specify "https" as protocol in your URL.

HTTP 404 – File not found
This error indicates that NSSL did not find the requested resource. Please
check if the requested resource is present on the specified HTTBASE
subvolume or HTTPZIP archive. If you created your zip file with path
information, make sure that you have specified the path in the resource URL.

128 • Troubleshooting NSSL Server - NonStop SSL Server

Troubles with NSSL

Address already in use
If the message "Fatal error: Could not listen on socket: Address already in
use" appears, please check whether the Source Port, which you assigned as
PORT parameter is not in use by any other process.

Could not open xxx file
If the message "Could not open xxx file" appears, please check whether the
file with the specified name (e.g. key file , certificate file, log file) is in use by
any other process.

Decode error
If a message with a "Decode Error" occurs in the NSSL log, a client may
have tried to create a non-secure connection to a secure NSSL server
(HTTPS, TELNETS, etc.). When connecting to an NSSL HTTPS server with
a browser, check if the requested URL specifies the correct protocol
(https://...).

Handshake error
If a message with a "handshake error" occurs in the NSSL log, please check
the following:

• does the client support the configured SSL protocol versions (MINVERSION,
MAXVERSION). For browsers it may be necessary to explicitly enable TLS if
MINVERSION is set to 3.1-

• does the client support the configured CIPHERSUITES? For browsers, it may be
necessary to upgrade to a "strong encryption" version, as weak 40 bit encryption
ciphers are not supported by NSSL.

Invalid address
If the message "Invalid address..." appears, please check whether PARAMS
TARGETHOST and TARGETPORT describe a valid host::port address in
your network.

Problem with checking license file
If you see a message like the following during startup:

NSSL Server - NonStop SSL Server Troubleshooting • 129

09:15:30.77|20|--
--------09:15:30.77|10|comForte NSSL server version
T9999G06_19Sep2003_comForte_SSLD_S40_103109:15:30.78|10|using openssl
version 0.9.7 - see http://www.openssl.org
09:15:30.78|10|config file: '(none)'
09:15:30.78|10|runtime args: 'TELNETS; PORT 9023; TARGETPORT 6502'
09:15:30.78|20|--------- start settings for Logging -----------
09:15:30.79|20| process name is $Y59A
09:15:30.79|20| trace file is '*' ('*' means none)
09:15:30.79|20| max file length 20480000 bytes, length-check every 100
writes
09:15:30.79|20| console is '%' ('*' means none, '%' means home
terminal)
09:15:30.79|20| global maximum level is 9999, maximum dump length is
112
09:15:30.79|20|--------- end settings for Logging -------------
09:15:30.80|10|log level is 50
09:15:31.16|10|your system number is 12151
 comForte SWAP server version T9999G06_19Sep2003_comForte_SSLD_S40_1031
 --- Fatal Error:

 problem with checking license file:
 system number conflict: license file LICENSE has 37936, system has
12151

 --- aborting.

you have some problems with your license file. For the run modes HTTPS,
TELNETS, PROXYC, PROXYS, MQS, MQC, FTPC and FTPS you need a
license file from Crystal Point which allows the usage of that run mode. The
license file is tied to your system number.

Security violation (error 4013)
If NSSL fails with a security violation, you may have attempted to start NSSL
to listen on a PORT smaller than 1024 without having a SUPER group user
id.

Excerpt from the "Tandem TCP/IP programming manual":

EACCES (4013)

Cause. A call to bind or bind_nw specified an address or port number that cannot be
assigned to a non-privileged user. Only applications whose process access ID is in
the SUPER group (user ID 255,n) can bind a socket to a well-known port.

Effect. The bind or bind_nw call failed.

Recovery. Specify another port number or address, or rerun the application with a
process access ID in the SUPER group (user ID 255,n).

130 • Appendix NSSL Server - NonStop SSL Server

Appendix

NSSL Log Messages and Warnings
This section lists all log and warning messages issued by NSSL.

Startup Messages
This section contains messages which are displayed during startup and
which are of an informational nature only.

comForte SWAP server version <NSSL version number> version_info
Appears right after startup and notifies about the version umber of the NSSL

using openssl version 0.9.7 - see http://www.openssl.org);
Notifies about the OpenSSL version bound to the NSSL

config file: '<filename>
Displays the name of the configuration file the NSSL has been started with

runtime args: '<list of runtime args>
If the NSSL has been started with runtime args instead or in addition to the a config
file or TACL params those args are being displayed.

log level is <log level>
Informs about the log level the NSSL has been started with

your system number is <system number>
The system number of the NSK system on which the NSSL has been started. This
number must be the same as the system number given in the license file.

license file check OK, <name of license file>
Notifies about the successful license check. Default license file name in LICENSE

starting collecting of random data
Notifies about the process of collecting random data.

collection of <number> bytes random data finished

NSSL Server - NonStop SSL Server Appendix • 131

Informs about completion of collecting random data. <number> is the number of
collected bytes.

no HTTPZIP archive configured
Informs that the NSSL has been started without a HTTPZIP archive being configured.
The HTTPZIP archive is a means to allow the NSSL although running (as a Web
server) under Guardian to support Unix like directory structures i.e. real URLs..

couldn't open HTTPZIP archive <filename>, error: <error number>
Warning to inform that the HTTPZIP archive identified by filename could not be
opened for the reasons specified by error number. Error number is a GUARDIAN file
system error.

no HTTPZIP archive will be used
This message occurs in cases were no HTTPZIP archive has been configured for the
NSSL. In this case all resources requested by the browser must reside in the NSK
subvolume where the NSSL resides or in the NSK subvolume given by the param
HTTPBASE.

using HTTP ZIP archive <filename>
Displays the filename of the HTTPZIP archive.

sysnum wild card not allowed with unlimited expiration date
The license check failed. Please contact Crystal Point.

sysnum wild card not allowed with expiration date more than 6 months
in advance

The license check failed. Please contact Crystal Point.

DEFINE =TCPIP^PROCESS^NAME has value '%s'"
Notification about which TCP/IP process name is being used

parameter SUBNET will be ignored
Notification that the value of the SUBNET parameter will be overridden by the
DEFINE =TCPIP^PROCESS^^NAME

TCP/IP process is <process name>
Notification about the TCP/IP process used for the communication in the current
context of this message.

parameter SUBNET was evaluated
Notification that a SUBNET param has been found and will be used to determine the
TCP/IP process

starting HTTPS server on port <port number>, default dir <directory
name>

Notification that the NSSL is starting in HTTPS mode listening on port given by port
number and defaulting to the subvolume given by the param HTTPBASE. If the latter
param ist not set the default dir is the one where the NSSL resides and <default
directory> in this message is left empty.

plain HTTP server on port <port>, default dir <directory name>

132 • Appendix NSSL Server - NonStop SSL Server

Notification that the NSSL has been started as a Web server in plain HTTP mode
listening on port given by port number and defaulting to the subvolume given by the
param HTTPBASE. If the latter param ist not set the default dir is the one where the
NSSL resides and <default directory> in this message is left empty.

plain-to-plain proxy started on target host <hostname or ip address>,
target port <port number>, source port <port number>

Notification that the NSSL has been started in plain-to-plain mode (i.e. no encryption
takes place on neither side). Target host, target port and source port involved in the
plain-to-plain session are given in the message.

secure-to-plain proxy started on target host <hostname or ip address>,
target port <port number>, source port <port number>

Notification that the NSSL has been started in a mode accepting connections for
secure data and connecting to the target host on target port for plain data.

plain-to-secure proxy started on target host <hostname or ip address>,
target port <port number>, source port <port number>

Notification that the NSSL has been started in a mode accepting connections for plain
data and connecting to the target host on target port for secure data.

FTP server proxy started on target host <hostname or ip address>,
target port <port number>, source port <port number>

Notification about the NSSL beint started in FTPS mode and connecting to target
host, on target port while accepting connections on source port.

FTP client proxy started on source port <port number>
Notification about the NSSL beint started in FTPC mode and accepting connections
on source port.

dumping configuration: <config setting>
Displays the settings of the configuration params

loading Server Certificate from file <filename>
Notification that the server certificate is being loaded from the file given by filename

loading next Certificate Chain file from file <filename>
Notification that the next of a sequence (chain) of signing certificates are being loaded
by the NSSL.

Fingerprint of Root CA is <MD5 fingerprint>
Notification about the MD5 calculated fingerprint of the root certificate. If fingerprint
checking is activated on the client side, this fingerprint must be preconfigured there.

loading private key from file <filename>
Notification about the server private key (see param SERVKEY) being loaded from
the file identified by filename.

adding CA Certificate Chain Level <curr number>/<max number>
<filename>

Notification about how many certificates the CA certificate chain contains, which of
these certificates are currently processed and what the filename of this is.

NSSL Server - NonStop SSL Server Appendix • 133

Connection closed by remote client
This log message will be issued any time a remote client disconnects unexpectedly.
In most cases (especially when running in TELNETS mode), this log message can be
safely ignored.

Warning Messages
The following messages are displayed under conditions where NSSL can
recover from an error and will continue to run.

Firewall: connection rejected from: <ip address>
Warning about a connection from a remote host identified by ip address being
rejected. This message may appear in conjunction with the ip filtering function of the
NSSL, see parameters ALLOWIP and DENYIP for details

invalid request <request-error> from <ip address>
Warning about the receiving of an invalid HTTP request received from remote host
identified by ip address. The parameter <request-error> will display a detailed error
message.

certificate not yet valid
Warning that the certificate being currently processed by the NSSL is not yet valid,
i.e. has a "from date" starting in the future.

certificate expired
Warning that the certificate being currently processed by the NSSL has expired i.e. is
not valid any longer.

request too big for buffer, <number> bytes read without EOR
Warning about an HTTP request with an invalid request length. Watch for other error
messages which come along with this warning.

<ip address> - received HTTPS request in HTTP mode
Notification about receipt of a HTTPS request received from ip address when running
in HTTP mode

F|#<session>-<ip address> login without SSL rejected
[FTPS mode only] The remote client identified by ip address attempted an unsecured
login on a secured port. The login was rejected.

TLS Alert: <TLS alert number>
Warning about an TLS alert received within current session

TLS Exception
Warning about a TLS exception received in current TLS session. Watch for message
which come along with this and which give additional information.

remote fingerprint <fingerprint> rejected
Warning that a certificate received from the remote SSL server was rejected because
the MD5 fingerprint did not match the one configured with NSSL param TRUST. The
calculated fingerprint is displayed.

134 • Appendix NSSL Server - NonStop SSL Server

OnAccept1Complete: error <error number>
Internal error occurred during acceptance of a TCP/IP connection. Watch for other
message which come along with this one in order to decide whether and what action
has to be taken.

OnAccept2Complete: error <error number>
Internal error occurred during acceptance of a TCP/IP connection. Watch for other
message which come along with this one in order to decide whether and what action
has to be taken.

F<session>|<-- unexpected reply to PASV command from FTP server:
<reply>

Warning about receipt of an unexpected reply from the remote FTP server upon
requesting Passive Mode FTP. Check whether the remote FTP server supports
passive mode FTP.

F<session>|<-- reply to STOR/RETR/LIST command from FTP server
has error: <reply>

Warning that the reply from the remote FTP server upon one of the mentioned
requests is erroneous. If this happens frequently contact your support representative.

F<session>|<-- reply to PORT command from FTP server has error:
<reply>

Warning about the receipt of an erroneous reply from a FTP server upon requesting
active mode FTP. Check whether the remote FTP server supports active mode FTP.

Informational Messages
The following messages display information about actual events. No
corrective action is necessary.

issuer= <an certificate issuer>
Notification about the issuer of the currently processed certificate during SSL session
establishment

F|#<session>-<ip address> close
[FTPS mode only] Notification about a session with host identified by ip address being
closed.

F|#<session> - <ip address> new connection
[FTPS mode only] Notification about a new connection being established with remote
client identified by ip address

Fatal Errors
The following messages are displayed in situations where a fatal error
occurred. NSSL will abend because it can not recover from that error.

Fatal Error: could not listen on port <port number>, error <error number
>

NSSL Server - NonStop SSL Server Appendix • 135

Error condition which is caused either by another application listening on same port or
by configuring the NSSL with a PORT param less then 1024 while not starting the
NSSL under the SUPER user logon. The NSSL terminates.

Fatal Error: AWAITIOX file <filename> (filenum <filenumber>)
completed with error <error number>

A nowaited operation on file identified by filename completed with a filesystem error.
Watch for other message which come along with this one in order to decide whether
and what action has to be taken.

Fatal Error: fatal error in proxy server, OnAccept: Accept failed
Internal error condition. Receiving a connection failed. Watch for other message
which come along with this one in order to decide whether and what action has to be
taken.

Fatal Error: HTTP fatal accept error in HTTP server
Internal error condition. Receiving a connection failed. Watch for other message
which come along with this one in order to decide whether and what action has to be
taken.

out of memory in CHTTPServer::OnAccept
Internal error condition. Contact your support representative.

Fatal SSL error <error text>, exiting
A fatal error specified by error text has occurred. The NSSL is being ended. Please
consult your support representative for further action.

Can't open input file <filename>
Warning that the file given by filename cannot be opened. The severity of this
message depends on the context in which it appears. If for example the server key
file cannot be opened the NSSL terminates. Watch for other messages surrounding
this one.

Fatal SSL error <error number> , exiting
A fatal error during SSL processing has occurred which causes the NSSL to
terminate. Watch for earlier message which give additional information.

illegal parameter <param value> for MINVERSION needs to be one of
2.0/3.0/3.1

Warning about an invalid setting of param MINVERSION. The allowed settings are
being displayed with the message. This message appears during start up of the
NSSL. The NSSL will not start.

illegal parameter '%s' for MAXVERSION needs to be one of 2.0/3.0/3.1
Error message about an invalid setting of param MAXVERSION. The allowed settings
are being displayed with the message. This message appears during start up of the
NSSL. The NSSL will not start.

MAXVERSION can not be smaller than MINVERSION
Warning that an invalid param setting have been detected where MINVERSION is
smaller than MAXVERSION. This message appears during start up of the NSSL. The
NSSL will not start.

136 • Index NSSL Server - NonStop SSL Server

Index

A
Acting as Your Own CA 115
Address already in use 127
ALLOWCERTERRORS 48
ALLOWIP 50
AUDITASCIIDUMPLENIN 51
AUDITASCIIDUMPLENOUT 51
AUDITASCIIONLY 51
AUDITCONSOLE 52
AUDITFILE 52
AUDITFILERETENTION 53
AUDITFORMAT 53
Auditing 112
AUDITLEVEL 54
AUDITMAXFILELENGTH 55

B
Browser displaying garbage page 126
Browser unable to connect 126

C
CACERTS 55
Cipher Suites 111
CIPHERSUITES 56
CLIENTAUTH 57
CLIENTCERT 57
CLIENTKEY 58
CLIENTKEYPASS 59
Command Interface NSSLCOM 100
Command Reference for CONNECTION

Commands 103
CONFIG 59
CONFIG2 60
Configuration Overview 41
Configuring a Loopback TCP/IP Process 92
Configuring NSSL as a Generic Process (G

series) 90

Configuring NSSL as a Static Pathway Server (D
series) 91

Configuring NSSL as Multi-Homed Proxy 91
Configuring SSL for Production as SSL Client 119
Configuring SSL for Production Running as SSL

Server 116
Connection closed by NSSL immediately after

setting-up a secure connection 126
CONNECTIONS 103
CONNECTIONS, DETAIL 104
Considerations for installing on different NonStop

server versions 24
CONTENTFILTER 60
Could not open xxx file 127
Customizing the Log Format 94

D
Decode error 127
DENYIP 62
Document History 9
DONOTWARNONERROR 63

E
EXPAND Multi-Line versus Multi-CPU Paths 37

F
Fatal Errors 133
Flexibility 112
FTPALLOWPLAIN 63
FTPCALLOW200REPLY 64
FTPLOCALDATAPORT 64
FTPMAXPORT 65
FTPMINPORT 65

H
Handshake error 127
HTTP 404 - File not found 126
HTTPBASE 66
HTTPZIP 66

I
If the Private Key Is Compromised 45
Implementation Overview 111
INFO CONNECTION 104
Informational Messages 133
Installation on the NonStop Server 24
Installing NSSL on the NonStop System 24
Installing the License File 25
INTERFACE 67
Introduction 122
Invalid address 127

NSSL Server - NonStop SSL Server Index • 137

K
KEEPALIVE 67

L
LICENSE 68
Load Balancing and Fault-Tolerance of EXPAND

over SSL 37
Log Level Recommendations 93
LOGCONSOLE 68
LOGEMS 69
LOGFILE 69
Logfile rollover for SWAP versions 1045 and

earlier 98
Logfile rollover for SWAP versions 1046 and later

98
Logfile/Auditfile rollover using round robin 98
LOGFILERETENTION 70
LOGFORMAT 71
LOGFORMATCONSOLE 71
LOGFORMATEMS 71
LOGFORMATFILE 72
LOGLEVEL 73
LOGLEVELCONSOLE 73
LOGLEVELEMS 74
LOGLEVELFILE 74
LOGMAXFILELENGTH 75
LOGMEMORY 75

M
Mapping URLs to Disk Files 109
MAXSESSIONS 76
MAXVERSION 76
MINVERSION 76
Monitoring NSSL 92
Multi-Line Path Installation Sample 38
Multiple Configurations in a Single NSSL Process

89

N
Non-Stop Availability 14, 89
NSSL as a Plain FTP Client Proxy 19
NSSL as a plain FTP Server Proxy 19
NSSL as a Proxy to Secure EXPAND Over IP

Traffic 20
NSSL as a Proxy to Secure IBM Websphere MQ

20
NSSL as a Secure ATTUNITY Server Proxy 19
NSSL as a Secure FTP Proxy 18
NSSL as a Secure Proxy for Generic TCP/IP

Client/Server Applications Access 17
NSSL as a Secure Proxy for ODBC/MX Traffic 21
NSSL as a Secure Proxy for Telnet Access 16

NSSL as a Secure Web Server 15
NSSL as a Web Server 14
NSSL Features 14
NSSL Log Messages and Warnings 129
NSSL Parameter Reference 46

O
Obtaining a Certificate from a Third Party CA 114
Optimizing Throughput 38
Overcoming Guardian File System Restrictions 15
Overview 92

P
Parallel Library Support 14
PARAM Commands 43
Parameter Overview 46
PASSIVE 77
PEERCERTCOMMONNAME 77
PEERCERTFINGERPRINT 78
Performance 14
Performance Analysis of SSL EXPAND Traffic 124
Performance analysis of SSL FTP traffic 123
Performance Analysis of SSL Session

Establishment 123
PORT 79
Problem with checking license file 127
Protecting Against the Man-in-the-Middle Attack

45
Protecting Plain Ports with NSSL as a Multi-

Homed Proxy 22
Protecting the Private Key File 45
PTCPIPFILTERKEY 80

R
RELOAD CERTIFICATES Command 105
RENEGOTIATE CONNECTION 105
Running NSSL as a Plain HTTP Server 27
Running NSSL as a Secure Attunity Proxy 31
Running NSSL as a Secure Client/Server Proxy

30
Running NSSL as a Secure FTP Proxy 32
Running NSSL as a Secure HTTPS Server 28
Running NSSL as a Secure RSC proxy 30
Running NSSL as a Secure Telnet Proxy 29
Running NSSL as a Secure WebSphere MQ

Proxy 34
Running NSSL as an SSL Tunnel for EXPAND-

Over-IP Lines 35
Running NSSL as an SSL Tunnel for ODBC/MX

Connections 40

138 • Index NSSL Server - NonStop SSL Server

S
Secure Sockets Layer 110
Secure Telnet Access Overview 17
Security Considerations 45
Security violation (error 4013) 128
SERVCERT 80
Serving HTTP Contents 107
Serving HTTP Contents from a ZIP Archive 108
SERVKEY 81
SERVKEYPASS 81
SLOWDOWN 82
SOCKSHOST, SOCKSPORT, SOCKSUSER 82
SSL 14
SSL Features 110
SSLINFO Command 105
Starting NSSL 44
Starting NSSL for Production as SSL Server 118
Startup Line Parameters 43
Startup Messages 129
SUBNET 83
Summary 125
Supported Commands 102
Supported MIME Types 107
SWAPCOMSECURITY 84
System Requirements 23

T
TARGETHOST 85
TARGETINTERFACE 84
TARGETPORT 85
TARGETSUBNET 86
TCPIPHOSTFILE 86
TCPIPNODEFILE 87
TCPIPRESOLVERNAME 87
TCPNODELAY 88
The Certificate Signing Request 114
The Certificate Tools 113
The Configuration File 42
The History of SSL 110
The Public/Private Key Pair 113
TLS Alerts 121
To Activate the SSL Tunnel for the EXPAND Line

36
To add the date to log messages 95
To Connect with a Browser 27
To Connect with Your Browser 28
To Convert the BASE64-Encoded Certificate

Received from a CA 115
To Create a HTTP Contents ZIP File for NSSL 108
To Create a Secure Connection with Any Secure

Telnet Client 30
To Create a Secure Telnet Connection with

OutsideView 30

To Have NSSL Require the SSL Client Send a
Certificate 118

To Have NSSL Send a Certificate to the SSL
Server 120

To interpret NSSL log output when running as web
server 99

To Issue a Certificate 115
To Run NSSL as a Multi-Homed Proxy 91
To Start NSSL with Verification of the Remote

Certificate 119
To Start NSSL with Your Own Certificate and

Private Key 118
To Start the NSSL EXPANDS Tunnel 36
To Start the NSSL FTP Client Proxy 33
To Start the NSSL FTP Client Proxy without

Encryption 33
To Start the NSSL FTP Server Proxy 32
To start the NSSL FTP Server Proxy with an Audit

Log 33
To Start the NSSL Secure Attunity Proxy 31
To Start the NSSL Secure ODBC/MX Proxy 40
To Start the NSSL Secure RSC proxy 30
To Start the NSSL Secure Telnet Proxy 29
To Start the NSSL Secure Web Server 28
To Start the NSSL Secure WebSphere MQ proxy

Process for the Receiving Channel 35
To Start the NSSL Secure WebSphere MQ Proxy

Process for the Sending Channel 34
To Start the NSSL Web Server 27
To Submit a Certificate Signing Request for a

Certificate 114
Troubles with NSSL 127
Troubles with the Browser 126
TRUST 88

U
Usage of NSSLCOM a Sample Session 101
Using NSSL to Limit the Remote IP Addresses 22
Using SHOWLOG to View a Log File 95
Using Your Own Server Key and Certificate Files

117

W
Warning Messages 132
Web Server Log 98
What is a log level? 93
What is a log message? 93
What Is the NSSL Server? 12
Who Should Read this Guide 7
Why are there three different log devices? 93

X
X.509 Certificates 112

NSSL Server - NonStop SSL Server Index • 139

	Preface
	Who Should Read this Guide
	Document History
	Introduction
	What Is the NSSL Server?
	NSSL Features
	SSL
	Non-Stop Availability
	Parallel Library Support
	Performance
	NSSL as a Web Server
	Overcoming Guardian File System Restrictions

	NSSL as a Secure Web Server
	NSSL as a Secure Proxy for Telnet Access
	Secure Telnet Access Overview
	NSSL as a Secure Proxy for Generic TCP/IP Client/Server Applications Access
	NSSL as a Secure FTP Proxy
	NSSL as a Plain FTP Client Proxy
	NSSL as a plain FTP Server Proxy
	NSSL as a Secure ATTUNITY Server Proxy
	NSSL as a Proxy to Secure IBM Websphere MQ
	NSSL as a Proxy to Secure EXPAND Over IP Traffic
	NSSL as a Secure Proxy for ODBC/MX Traffic
	Protecting Plain Ports with NSSL as a Multi-Homed Proxy
	Using NSSL to Limit the Remote IP Addresses

	Installation
	System Requirements
	Installation on the NonStop Server
	Installing NSSL on the NonStop System
	Considerations for installing on different NonStop server versions
	Installing the License File

	Running NSSL as a Plain HTTP Server
	To Start the NSSL Web Server
	To Connect with a Browser

	Running NSSL as a Secure HTTPS Server
	To Start the NSSL Secure Web Server
	To Connect with Your Browser

	Running NSSL as a Secure Telnet Proxy
	To Start the NSSL Secure Telnet Proxy
	To Create a Secure Connection with Any Secure Telnet Client
	To Create a Secure Telnet Connection with OutsideView

	Running NSSL as a Secure Client/Server Proxy
	Running NSSL as a Secure RSC Proxy
	To Start the NSSL Secure RSC Proxy

	Running NSSL as a Secure Attunity Proxy
	To Start the NSSL Secure Attunity Proxy

	Running NSSL as a Secure FTP Proxy
	To Start the NSSL FTP Server Proxy
	To start the NSSL FTP Server Proxy with an Audit Log
	To Start the NSSL FTP Client Proxy
	To Start the NSSL FTP Client Proxy without Encryption

	Running NSSL as a Secure WebSphere MQ Proxy
	To Start the NSSL Secure WebSphere MQ Proxy Process for the Sending Channel
	To Start the NSSL Secure WebSphere MQ Proxy Process for the Receiving Channel

	Running NSSL as an SSL Tunnel for EXPAND-Over-IP Lines
	Starting NSSL
	To Start the NSSL EXPANDS Tunnel
	To Activate the SSL Tunnel for the EXPAND Line

	Load Balancing and Fault-Tolerance of EXPAND over SSL
	EXPAND Multi-Line versus Multi-CPU Paths

	Optimizing Throughput
	Multi-Line Path Installation Sample

	Running NSSL as an SSL Tunnel for ODBC/MX Connections
	To Start the NSSL Secure ODBC/MX Proxy

	Configuring and Running NSSL
	Configuration Overview
	The Configuration File
	PARAM Commands
	Startup Line Parameters

	Starting NSSL
	Security Considerations
	Protecting Against the Man-in-the-Middle Attack
	Protecting the Private Key File
	If the Private Key Is Compromised

	NSSL Parameter Reference
	Parameter Overview
	ALLOWCERTERRORS
	ALLOWIP
	AUDITASCIIONLY
	AUDITASCIIDUMPLENIN
	AUDITASCIIDUMPLENOUT
	AUDITCONSOLE
	AUDITFILE
	AUDITFILERETENTION
	AUDITFORMAT
	AUDITLEVEL
	AUDITMAXFILELENGTH
	CACERTS
	CIPHERSUITES
	CLIENTAUTH
	CLIENTCERT
	CLIENTKEY
	CLIENTKEYPASS
	CONFIG
	CONFIG2
	CONTENTFILTER
	DENYIP
	DONOTWARNONERROR
	FTPALLOWPLAIN
	FTPCALLOW200REPLY
	FTPLOCALDATAPORT
	FTPMAXPORT
	FTPMINPORT
	HTTPBASE
	HTTPZIP
	INTERFACE
	KEEPALIVE
	LICENSE
	LOGCONSOLE
	LOGEMS
	LOGFILE
	LOGFILERETENTION
	LOGFORMAT
	LOGFORMATCONSOLE
	LOGFORMATEMS
	LOGFORMATFILE
	LOGLEVEL
	LOGLEVELCONSOLE
	LOGLEVELEMS
	LOGLEVELFILE
	LOGMAXFILELENGTH
	LOGMEMORY
	MAXSESSIONS
	MAXVERSION
	MINVERSION
	PASSIVE
	PEERCERTCOMMONNAME
	PEERCERTFINGERPRINT
	PORT
	PTCPIPFILTERKEY
	SERVCERT
	SERVKEY
	SERVKEYPASS
	SLOWDOWN
	SOCKSHOST, SOCKSPORT, SOCKSUSER
	SUBNET
	SWAPCOMSECURITY
	TARGETINTERFACE
	TARGETHOST
	TARGETPORT
	TARGETSUBNET
	TCPIPHOSTFILE
	TCPIPNODEFILE
	TCPIPRESOLVERNAME
	TCPNODELAY
	TRUST

	Multiple Configurations in a Single NSSL Process
	Non-Stop Availability
	Configuring NSSL as a Generic Process (G series)
	Configuring NSSL as a Static Pathway Server (D series)

	Configuring NSSL as Multi-Homed Proxy
	To Run NSSL as a Multi-Homed Proxy
	Configuring a Loopback TCP/IP Process

	Monitoring NSSL
	Overview
	What is a log message?
	Why are there three different log devices?
	What is a log level?
	Log Level Recommendations

	Customizing the Log Format
	To add the date to log messages

	Using SHOWLOG to View a Log File
	Logfile/Auditfile rollover using round robin
	Logfile rollover for NSSL versions 1045 and earlier
	Logfile rollover for NSSL versions 1046 and later

	Web Server Log
	To interpret NSSL log output when running as web server

	Command Interface NSSLCOM
	 Usage of NSSLCOM: a Sample Session
	Supported Commands
	Command Reference for CONNECTION Commands
	CONNECTIONS
	CONNECTIONS, DETAIL
	INFO CONNECTION
	RENEGOTIATE CONNECTION

	SSLINFO Command
	RELOAD CERTIFICATES Command

	Web Server Reference
	Supported MIME Types
	Serving HTTP Contents
	Serving HTTP Contents from a ZIP Archive
	To Create a HTTP Contents ZIP File for NSSL

	Mapping URLs to Disk Files

	SSL Reference
	Secure Sockets Layer
	The History of SSL
	SSL Features

	Implementation Overview
	Cipher Suites
	Auditing
	Flexibility
	X.509 Certificates

	The Certificate Tools
	The Public/Private Key Pair
	The Certificate Signing Request
	Obtaining a Certificate from a Third Party CA
	To Submit a Certificate Signing Request for a Certificate
	To Convert the BASE64-Encoded Certificate Received from a CA

	Acting as Your Own CA
	To Issue a Certificate

	Configuring SSL for Production Running as SSL Server
	Using Your Own Server Key and Certificate Files
	Starting NSSL for Production as SSL Server
	To Have NSSL Require the SSL Client Send a Certificate
	To Start NSSL with Your Own Certificate and Private Key

	Configuring SSL for Production as SSL Client
	To Start NSSL with Verification of the Remote Certificate
	To Have NSSL Send a certificate to the SSL Server

	TLS Alerts

	Performance Considerations
	Introduction
	Performance Analysis of SSL Session Establishment
	Performance analysis of SSL FTP traffic
	Performance Analysis of SSL EXPAND Traffic
	Summary

	Troubleshooting
	Troubles with the Browser
	Browser unable to connect
	Browser displaying garbage page
	Connection closed by NSSL immediately after setting-up a secure connection
	HTTP 404 – File not found

	Troubles with NSSL
	Address already in use
	Could not open xxx file
	Decode error
	Handshake error
	Invalid address
	Problem with checking license file
	Security violation (error 4013)

	Appendix
	NSSL Log Messages and Warnings
	Startup Messages
	Warning Messages
	Informational Messages
	Fatal Errors

	Index

